DOI QR코드

DOI QR Code

Clinical impact of cerebral microbleeds on cognition in patients with CADASIL

  • Lee, Jung Seok (Department of Neurology, Jeju National University College of Medicine) ;
  • Ko, Keun Hyuk (Department of Neurology, Jeju National University Hospital) ;
  • Oh, Jung-Hwan (Department of Neurology, Jeju National University College of Medicine) ;
  • Choi, Jay Chol (Department of Neurology, Jeju National University College of Medicine) ;
  • Kim, Joong-Goo (Department of Neurology, Jeju National University Hospital)
  • Received : 2018.10.23
  • Accepted : 2018.12.12
  • Published : 2018.12.31

Abstract

Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is inherited microangiopathy caused by mutations in the Notch3 gene. Typical findings from brain magnetic resonance imaging (MRI) include subcortical lacunes, extensive white matter change and cerebral microbleeds(CMBs). CMBs are indicative of bleeding-prone microangiopathy. Despite some studies investigating the association between lacunes and cognitive dysfunction in CADASIL, few studies have examined the relationship between cognitive dysfunction and CMBs. We sought to assess whether CMBs are associated with cognitive dysfunction in CADASIL. This study enrolled 83 consecutive patients with CADASIL between April 2012 and January 2014. Their degree of cognitive dysfunction was assessed by the Korean version of the CERAD neuropsychological assessment battery, digit span test, and the Stroop test. A 3.0-T MRI was used to obtain T1-weighted, fluid-attenuated inversion recovery, and susceptibility weighted images. In multiple logistic regression analysis, the grade of CMBs influenced tests of memory dysfunction (p=0.003). Three or more lacunes correlated with dysfunction in the executive domain (p=0.013) and attention domain (p=0.005). White matter hyperintensity (WMH) was an independent predictor of executive dysfunction (p=0.001). These findings suggest that in addition to lacunes, CMBs and WMHs may be useful imaging markers to associated with cognitive dysfunction in CADASIL.

Keywords

References

  1. Greenberg SM, Vernooij MW, Cordonnier C, Viswanathan A, Al-Shahi Salman R, Warach S, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009;8:165-74. https://doi.org/10.1016/S1474-4422(09)70013-4
  2. Tatsumi S, Shinohara M, Yamamoto T. Direct comparison of histology of microbleeds with postmortem MR images: a case report. Cerebrovasc Dis (Basel, Switzerland) 2008;26:142-6. https://doi.org/10.1159/000139661
  3. Nandigam RN, Viswanathan A, Delgado P, Skehan ME, Smith EE, Rosand J, et al. MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol 2009; 30:338-43. https://doi.org/10.3174/ajnr.A1355
  4. Ayaz M, Boikov AS, Haacke EM, Kido DK, Kirsch WM. Imaging cerebral microbleeds using susceptibility weighted imaging: one step toward detecting vascular dementia. J Magn Reson Imaging 2010;31:142-8. https://doi.org/10.1002/jmri.22001
  5. Pantoni L, Fierini F, Poggesi A. Thrombolysis in acute stroke patients with cerebral small vessel disease. Cerebrovasc Dis (Basel, Switzerland) 2014;37:5-13. https://doi.org/10.1159/000356796
  6. Thijs V, Lemmens R, Schoofs C, Gorner A, Van Damme P, Schrooten M, et al. Microbleeds and the Risk of Recurrent Stroke. Stroke 2010;41:2005-9. https://doi.org/10.1161/STROKEAHA.110.588020
  7. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 1996;383:707-10. https://doi.org/10.1038/383707a0
  8. Lee JS, Choi JC, Kang SY, Kang JH, Lee SH, Kim JH, et al. Olfactory identification deficits in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Eur Neurol 2010;64:280-5. https://doi.org/10.1159/000320942
  9. Dichgans M. CADASIL: a monogenic condition causing stroke and subcortical vascular dementia. Cerebrovasc Dis (Basel, Switzerland) 2002;13 Suppl 2:37-41. https://doi.org/10.1159/000049148
  10. Choi JC, Kang S-Y, Kang J-H, Park J-K. Intracerebral hemorrhages in CADASIL. Neurology 2006;67:2042-4. https://doi.org/10.1212/01.wnl.0000246601.70918.06
  11. Lesnik Oberstein SA, van den Boom R, van Buchem MA, van Houwelingen HC, Bakker E, Vollebregt E, et al. Cerebral microbleeds in CADASIL. Neurology 2001;57:1066-70. https://doi.org/10.1212/WNL.57.6.1066
  12. Liem MK, Lesnik Oberstein SA, Haan J, van der Neut IL, Ferrari MD, van Buchem MA, et al. MRI correlates of cognitive decline in CADASIL. A 7-year follow-up study 2009;72:143-8.
  13. Lee JS, Kang C-H, Park SQ, Choi HA, Sim K-B. Clinical significance of cerebral microbleeds locations in CADASIL with R544C NOTCH3 mutation. PloS one 2015;10:e0118163-e. https://doi.org/10.1371/journal.pone.0118163
  14. Kim HS, Lee DH, Ryu CW, Lee JH, Choi CG, Kim SJ, et al. Multiple cerebral microbleeds in hyperacute ischemic stroke: impact on prevalence and severity of early hemorrhagic transformation after thrombolytic treatment. AJNR Am J Roentgenol 2006;186:1443-9. https://doi.org/10.2214/AJR.04.1933
  15. Kim Y, Choi EJ, Choi CG, Kim G, Choi JH, Yoo HW, et al. Characteristics of CADASIL in Korea: a novel cysteine-sparing Notch3 mutation. Neurology 2006;66:1511-6. https://doi.org/10.1212/01.wnl.0000216259.99811.50
  16. Viswanathan A, Guichard JP, Gschwendtner A, Buffon F, Cumurcuic R, Boutron C, et al. Blood pressure and haemoglobin A1c are associated with microhaemorrhage in CADASIL: a two-centre cohort study. Brain 2006;129:2375-83. https://doi.org/10.1093/brain/awl177
  17. Dichgans M, Holtmannspotter M, Herzog J, Peters N, Bergmann M, Yousry TA. Cerebral microbleeds in CADASIL: a gradient-echo magnetic resonance imaging and autopsy study. Stroke 2002;33:67-71. https://doi.org/10.1161/hs0102.100885
  18. Viswanathan A, Gschwendtner A, Guichard JP, Buffon F, Cumurciuc R, O'Sullivan M, et al. Lacunar lesions are independently associated with disability and cognitive impairment in CADASIL. Neurology 2007;69:172-9. https://doi.org/10.1212/01.wnl.0000265221.05610.70
  19. Liem MK, van der Grond J, Haan J, van den Boom R, Ferrari MD, Knaap YM, Breuning MH, et al. Lacunar infarcts are the main correlate with cognitive dysfunction in CADASIL. Stroke 2007;38:923-8. https://doi.org/10.1161/01.STR.0000257968.24015.bf
  20. Lee JS, Choi JC, Kang SY, Kang JH, Na HR, Park JK. Effects of lacunar infarctions on cognitive impairment in patients with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Journal of clinical neurology (Seoul, Korea) 2011;7:210-4. https://doi.org/10.3988/jcn.2011.7.4.210
  21. Epelbaum S, Benisty S, Reyes S, O'Sullivan M, Jouvent E, During M, et al. Verbal memory impairment in subcortical ischemic vascular disease: a descriptive analysis in CADASIL. Neurobiol Aging 2011;32:2172-82. https://doi.org/10.1016/j.neurobiolaging.2009.12.018
  22. Dichgans M, Markus HS, Salloway S, Verkkoniemi A, Moline M, Wang Q, et al. Donepezil in patients with subcortical vascular cognitive impairment: a randomised double-blind trial in CADASIL. Lancet Neurol 2008;7:310-8. https://doi.org/10.1016/S1474-4422(08)70046-2
  23. Seo SW, Hwa Lee B, Kim EJ, Chin J, Sun Cho Y, Yoon U, et al. Clinical significance of microbleeds in subcortical vascular dementia. Stroke 2007;38:1949-51. https://doi.org/10.1161/STROKEAHA.106.477315
  24. Charlton RA, Morris RG, Nitkunan A, Markus HS. The cognitive profiles of CADASIL and sporadic small vessel disease. Neurology 2006;66:1523-6. https://doi.org/10.1212/01.wnl.0000216270.02610.7e
  25. Breteler MM, van Swieten JC, Bots ML, Grobbee DE, Claus JJ, van den Hout JH, et al. Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the Rotterdam Study. Neurology 1994;44:1246-52. https://doi.org/10.1212/WNL.44.7.1246
  26. Benisty S, Reyes S, Godin O, Herve D, Zieren N, Jouvent E, et al. White-matter lesions without lacunar infarcts in CADASIL. J Alzheimers Dis 2012;29:903-11. https://doi.org/10.3233/JAD-2012-111784
  27. Dichgans M. Cognition in CADASIL. Stroke 2009;40:S45-S7. https://doi.org/10.1161/STROKEAHA.108.534412
  28. van Es AC, van der Grond J, de Craen AJ, Westendorp RG, Bollen EL, Blauw GJ, et al. Cerebral microbleeds and cognitive functioning in the PROSPER study. Neurology 2011;77:1446-52. https://doi.org/10.1212/WNL.0b013e318232ab1d