DOI QR코드

DOI QR Code

Algorithm for Detecting PSD Boundary Invasion in Subway PSD using Image Processing

영상처리를 이용한 지하철 스크린 도어의 경계선 침범인식 알고리듬 연구

  • 백운석 (동양대학교 컴퓨터정보통신군사학과) ;
  • 이하운 (동양대학교 철도전기융합학과)
  • Received : 2018.08.20
  • Accepted : 2018.10.15
  • Published : 2018.10.31

Abstract

This paper propose image processing algorithm to prevent safety accidents near by subway platform screen door(PSD). First, edges of the subway PSD images are detected and the boundary line between PSD and subway platform is detected to decide people's approach to the PSD using Hough transform. To do this, we draw the boundary line between the PSD and platform, to detect the boundary line and to decide the people's approach to the detected line is completely connected or not. Generally, edge is the basic characteristic of image; thus, edge detection is very important in image processing applications and computer vision area. The conventional edge detection methods such as Roberts, Sobel, Prewitt, and Laplacian etc, which are using a fixed value of mask, and morphological gradient from the structuring element of view and Canny edge detector are widely used. In this paper, we propose the detection algorithm about the people's approach to the subway PSD to prevent the safety accidents by using Canny edge detector and Hough transform and the computer simulation shows the results.

지하철 스크린도어(PSD)에서 발생할 수 있는 안전사고 예방을 위한 영상처리 알고리듬을 제안한다. 우선 지하철 스크린도어 영상에 대해 에지를 검출 하고, 사람의 스크린도어 접근 여부를 판단하기 위해 호프변환을 이용하여 직선을 검출한다. 이를 위해 스크린도어 경계면에 일직선을 긋고 이 직선의 끊김 여부로 사람의 접근을 판단한다. 일반적으로 에지는 영상의 가장 기본적인 특징을 나타내며, 에지 검출은 영상처리 및 컴퓨터 비전 분야에서 매우 중요하다. 에지 검출 방법에는 로버츠, 소벨, 프리윗, 라플라시안 등 고정된 값의 마스크를 사용하는 방법과 영상을 형태학적 관점에서 접근하여 처리하는 모폴로지 방법 및 캐니에지 검출 방법 등이 있다. 본 논문에서는 캐니에지 검출방법과 호프변환을 이용하여 지하철 스크린도어에서 사람의 접근 여부에 대한 감지 알고리듬을 제안하고 실제 그 결과를 컴퓨터 시뮬레이션으로 나타내었다.

Keywords

References

  1. L. Bin and M. Samiei, "Comparison for image edge detection algorithms," International Organization of Scientific Research Journal of Computer Engineering, vol. 2, Issue 6, 2012, pp. 1-4.
  2. A. Calba, H. Wilkinson, and J. Roerdink, "Morphological hat-transform scale spaces and their use in pattern classification," Pattern Recognition, vol. 37, Issue 5, May 2004, pp. 901-915. https://doi.org/10.1016/j.patcog.2003.09.009
  3. R. Muthukrishnan. and M. Radha, "Edge detection techniques for image segmentation," International Journal of Computer Science & Information Technology, vol. 3, no. 6, Dec. 2011, pp. 259-267. https://doi.org/10.5121/ijcsit.2011.3620
  4. K. Kim, W. Son. M. Lee, and Y. Park, "The study of parking management system by image processing," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 4, 2017, pp. 651-656. https://doi.org/10.13067/JKIECS.2017.12.4.651
  5. H. Lee, "Road extraction of urban areas from satellite imaginary using wavelet transform and morphological process," In Proc. of the International Conference of Korea Institute of Maritime and Communication Science, Gold Coast, Australia, 2010, pp. 160-163.
  6. N. Kim and J. Ha, "Performing missions of a small biped walking robot using image processing," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 12, 2016, pp. 1225-1230. https://doi.org/10.13067/JKIECS.2016.11.12.1225
  7. J. Lee and J. Kim, "Recognition of a new car plate using color information and error back-propagation neural network algorithms," J. of the Korea Institute of Electronic Communication Sciences, vol. 5, no. 6, 2010, pp. 471-476.
  8. H. Kim, G. Lee, J. Park, and Y. Yu, "Vehicle detection in tunnel using Gaussian mixture model and mathematical morphological processing," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 5, 2012, pp. 967-974. https://doi.org/10.13067/JKIECS.2012.7.5.967
  9. K. Kim, "The lines extraction and analysis of the palm using morphological information of the hand and contour tracking method," J. of the Korea Institute of Electronic Communication Sciences, vol. 6, no. 2, 2011, pp. 243-248. https://doi.org/10.13067/JKIECS.2011.6.2.243
  10. W. Baek and H. Lee, "A modified top-hat and bottom-hat transform for edge detection," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 9, 2016, pp. 901-908. https://doi.org/10.13067/JKIECS.2016.11.9.901
  11. M. Roushdy, "Comparative study of edge detection algorithms applying on the grayscale noisy image using morphological filter," J. on Graphic, Vision and Image Processing, vol. 6, Issue 4, Dec. 2006, pp. 17-23.
  12. N. Senthilkumaran and R. Rajesh, "Edge detection techniques for image segmentation - A survey of soft computing approaches," Int. J. of Recent Trends in Engineering and Technology, vol. 1, no. 2, Nov. 2009, pp. 250-254.
  13. J. Canny, "A computational approach to edge detection", IEEE Trans. Pattern Anal. Mach. Intell. vol. 8, no. 6, 1986, pp. 679-698.