DOI QR코드

DOI QR Code

한국 재래종 강낭콩 유전자원의 phytochemical 및 항산화 활성 평가

Evaluation of Phytochemical econtents and antioxidant activity of Korean common bean (Phaseolus vulgaris L) landraces

  • 이경준 (농촌진흥청 국립농업과학원 농업유전자원센터) ;
  • 신명재 (농촌진흥청 국립농업과학원 농업유전자원센터) ;
  • 조규택 (농촌진흥청 국립농업과학원 농업유전자원센터) ;
  • 이기안 (농촌진흥청 연구정책과) ;
  • 마경호 (농촌진흥청 국립원예특작과학원 인삼특작부) ;
  • 정종욱 (충북대학교 농업생명환경대학 특용식물학과) ;
  • 이정로 (농촌진흥청 국립농업과학원 농업유전자원센터)
  • Lee, Kyung Jun (National Agrobiodiversity Center, National Institute of Agricultural Sciences (NAS), RDA) ;
  • Shin, Myoung-Jae (National Agrobiodiversity Center, National Institute of Agricultural Sciences (NAS), RDA) ;
  • Cho, Gyu-Taek (National Agrobiodiversity Center, National Institute of Agricultural Sciences (NAS), RDA) ;
  • Lee, Gi-An (Research Policy Bureau, RDA) ;
  • Ma, Kyung-Ho (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), RDA) ;
  • Chung, Jong-Wook (Department of Industrial Plant Science & Technology, Chungbuk National University) ;
  • Lee, Jung-Ro (National Agrobiodiversity Center, National Institute of Agricultural Sciences (NAS), RDA)
  • 투고 : 2018.08.17
  • 심사 : 2018.12.14
  • 발행 : 2018.12.31

초록

1. 본 연구는 한국 재래종 강낭콩 209자원의 phytochemical 및 항산화활성을 평가하였다. 2. 항산화활성은 DPPH, ABTS, FRAP, SOD를 분석하였으며 phytochemical은 kaempferol, myricetin, quercetin, naringenin 함량을 각각 분석하였다. 3. 항산화활성은 강낭콩 자원 간 다양한 분포를 보였으며 DPPH의 경우 62.3~643.9 (IC50), ABTS의 경우 0.28~1.49 mgAAE/g, FRAP의 경우 0.41~5.44 mgAAE/g, SOD의 경우 50.4 ~ 299.8 (IC50)로 나타났다. 4. Relative antioxidant capacity index (RACI)로 강낭콩 자원의 항산화활성을 비교한 결과 IT104587이 가장 높은 항산화활성을 보였으며 IT189598이 가장 낮은 항산화활성을 보였다. 5. 분석된 Phytochemical 중에서 한국 재래종 강낭콩에서는 Kaempferol이 가장 높은 함량을 나타냈다. 6. PCA 분석 결과 209자원은 3개의 그룹으로 나뉘었으며 이중 그룹 III에 속한 46자원의 강낭콩이 낮은 항산화활성 및 phytochemical 함량을 보였다. 7. 본 연구 결과는 한국 재래종 강낭콩의 항산화활성 및 phytochemical 정보를 제공하며 이 정보는 강낭콩 품종 개발을 위한 기초 정보로 사용될 수 있을 것이다.

The Korean common bean (Phaseolus vulgaris L.) has been receiving increased attention as a functional food. The objective of this study was to reveal the phytochemicals genetic variation and antioxidant activity of 209 Korean common bean landraces. Antioxidant activity was evaluated with the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), ferric reducing antioxidant power (FRAP), and superoxide dismutase (SOD) assay. Antioxidant activities among common bean accessions showed wide variation. Four flavonoids (kaempferol, myricetin, quercetin, and naringenin) of the 209 Korean common bean landraces were measured using HPLC. Among them, kaempferol had the highest phytochemicals compared to the other three flavonoids. Using the relative antioxidant capacity index (RACI), it was found out that the IT104587 had the highest antioxidant activity. Meanwhile, in clustering analysis, the Korean common bean landraces were classified into three clusters. Among them, cluster II contained 64 landraces with higher antioxidant activities and phytochemicals than the other clusters, except DPPH. The results could provide information on the valuable Korean common bean landraces for the development of new common bean varieties.

키워드

과제정보

연구 과제번호 : Research Program for Agricultural Science & Technology Development

참고문헌

  1. Aguilera Y., M. Duenas, I. Estrella, T. Hernandez, V. Benitez, R.M. Esteban and M.A. Martin-Cabrejas. 2010. Evaluation of Phenolic Profile and Antioxidant Properties of Pardina Lentil As Affected by Industrial Dehydration. J. Agric. Food Chem. 58:10101-10108. https://doi.org/10.1021/jf102222t
  2. Akillioglu H.G. and S. Karakaya. 2010. Changes in total phenols, total flavonoids, and antioxidant activities of common beans and pinto beans after soaking, cooking, and in vitro digestion process. Food Sci. Biotechnol. 19:633-639. https://doi.org/10.1007/s10068-010-0089-8
  3. Balasundram N., K. Sundram, and S. Samman. 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 99:191-203. https://doi.org/10.1016/j.foodchem.2005.07.042
  4. Beninger C.W., L. Gu, R.L. Prior, D.C. Junk, A. Vandenberg, and K.E. Bett. 2005. Changes in Polyphenols of the Seed Coat during the After-Darkening Process in Pinto Beans (Phaseolus vulgaris L.) J. Agric Food Chem. 53:7777-7782. https://doi.org/10.1021/jf050051l
  5. Brush S.B. 1995. In Situ Conservation of Landraces in Centers of Crop Diversity. Crop Sci. 35:346-354. https://doi.org/10.2135/cropsci1995.0011183X003500020009x
  6. Cardador-Martinez A., G. Loarca-Pina, and B.D. Oomah. 2002. Antioxidant activity in common beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 50:6975-6980. https://doi.org/10.1021/jf020296n
  7. Chen G.-L., S.-G. Chen, F. Chen, Y.-Q. Xie, M.-D. Han, C.-X. Luo, Y.-Y. Zhao, and Y.-Q. Gao. 2016. Nutraceutical potential and antioxidant benefits of selected fruit seeds subjected to an in vitro digestion. J. Func. Foods 20:317-331. https://doi.org/10.1016/j.jff.2015.11.003
  8. Chen P.X., G.G. Bozzo, J.A. Freixas-Coutin, M.F. Marcone, P.K. Pauls, Y. Tang, B. Zhang, R. Liu, and R. Tsao. 2015. Free and conjugated phenolic compounds and their antioxidant activities in regular and non-darkening cranberry bean (Phaseolus vulgaris L.) seed coats. J. Func. Foods 18:1047-1056. https://doi.org/10.1016/j.jff.2014.10.032
  9. de Lima P.F., C.A. Colombo, A.F. Chiorato, L.F. Yamaguchi, M.J. Kato, and S.A. Carbonell. 2014. Occurrence of isoflavonoids in Brazilian common bean germplasm (Phaseolus vulgaris L.). J. Agric. Food Chem. 62:9699-9704. https://doi.org/10.1021/jf5033312
  10. Del Pino-Garcia R., G. Gerardi, M.D. Rivero-Perez, M.L. Gonzalez-SanJose, J. Garcia-Lomillo, and P. Muniz. 2016. Free and conjugated phenolic compounds and their antioxidant activities in regular and non-darkening cranberry bean (Phaseolus vulgaris L.) seed coats. J. Func. Foods 18:1047-1056.
  11. FAO. 2010. Second report on the world's plant genetic resources for food and agriculture. Food and Agriculture Organization, Rome, Italy.
  12. Ferguson A.R. 2007. The need for characterisation and evaluation of germplasm: kiwifruit as an example Euphytica 154:371-382. https://doi.org/10.1007/s10681-006-9188-2
  13. Gee J.M. and I.T. Johnson. 2001. Polyphenolic compounds: interactions with the gut and implications for human health. Cur. Med. Chem. 8:1245-1255. https://doi.org/10.2174/0929867013372256
  14. Golam Masum Akond A.S.M., L. Khandaker, B. Janelle, L. Gates, K. Peters, H. Delong, and K. Hossain. 2011. Anthocyanin, Total Polyphenols and Antioxidant Activity of Common Bean. J. Food Technol. 6:385-394. https://doi.org/10.3923/ajft.2011.385.394
  15. Hou W.C., R.D. Lin, K.T. Cheng, Y.T. Hung, C.H. Cho, C.H. Chen, S.Y. Hwang, and M.H. Lee. 2003. Free radical-scavenging activity of Taiwanese native plants. Phytomedicine 10:170-175. https://doi.org/10.1078/094471103321659898
  16. Jarvis D.I., A.H.D. Brown, P.H. Cuong, L. Collado-Panduro, L. Latournerie-Moreno, S. Gyawali, T. Tanto, M. Sawadogo, I. Mar, M. Sadiki, N.T.-N. Hue, L. Arias-Reyes, D. Balma, J. Bajracharya, F. Castillo, D. Rijal, L. Belqadi, R. Rana, S. Saidi, J. Ouedraogo, R. Zangre, K. Rhrib, J.L. Chavez, D. Schoen, B. Sthapit, P. De Santis, C. Fadda, and T. Hodgkin. 2008. A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proceed. Natl. Acad. Sci. 105:5326-5331. https://doi.org/10.1073/pnas.0800607105
  17. Kan L., S. Nie, J. Hu, Z. Liu, and M. Xie. 2016. Antioxidant activities and anthocyanins composition of seed coats from twenty-six kidney bean cultivars. J. Func. Foods 26:622-631. https://doi.org/10.1016/j.jff.2016.08.030
  18. Koh E., K.M.S. Wimalasiri, A.W. Chassy and A.E. Mitchell. 2009. Content of ascorbic acid, quercetin, kaempferol and total phenolics in commercial broccoli. J. Food Compos. Anal. 22:637-643. https://doi.org/10.1016/j.jfca.2009.01.019
  19. Lee K.J., K.-H. Ma, Y.-H. Cho, J.-R. Lee, J.-W. Chung, and G.-A. Lee. 2017. Phytochemical distribution and antioxidant activities of Korean adzuki bean (Vigna angularis) landraces. J. Crop Sci. Biotechnol. 20:205-212. https://doi.org/10.1007/s12892-017-0056-0
  20. Lin L.Z., J.M. Harnly, M.S. Pastor-Corrales, and D.L. Luthria. 2008. The polyphenolic profiles of common bean (Phaseolus vulgaris L.). Food Chem. 107:399-410. https://doi.org/10.1016/j.foodchem.2007.08.038
  21. Lopez A., T. El-Naggar, M. Duenas, T. Ortega, I. Estrella, T. Hernandez, M.P. Gomez-Serranillos, O.M. Palomino, and M.E. Carretero. 2013. Effect of cooking and germination on phenolic composition and biological properties of dark beans (Phaseolus vulgaris L.). Food Chem. 138:547-555. https://doi.org/10.1016/j.foodchem.2012.10.107
  22. Malaveille C., A. Hautefeuille, B. Pignatelli, G. Talaska, P. Vineis and H. Bartsch. 1996. Dietary phenolics as anti-mutagens and inhibitors of tobacco-related DNA adduction in the urothelium of smokers. Carcinogenesis 17:2193-2200. https://doi.org/10.1093/carcin/17.10.2193
  23. Mensor L.L., F.S. Menezes, G.G. Leitao, A.S. Reis, T.C. dos Santos, C.S. Coube and S.G. Leitao. 2001. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res. 15:127-130. https://doi.org/10.1002/ptr.687
  24. Moharram A. H. and M. Youssef. 2014. Methods for Determining the Antioxidant Activity: A Review. J. Fd. Sci. Technol. 11: 31-42.
  25. Orak H.H., M. Karamac, A. Orak, R. and Amarowicz. 2016. Antioxidant Potential and Phenolic Compounds of Some Widely Consumed Turkish White Bean (Phaseolus vulgaris L.) Varieties. Pol. J. Food Nutr. Sci. 66:253-260. https://doi.org/10.1515/pjfns-2016-0022
  26. Patil A.B. and A.S. Jadhav AS. 2013. Flavonoids an antioxidants: a review. Int. J. Pharmaceut. Biol. Sci. Res. Dev. 2:7-20.
  27. RiceEvans C.A., J. Miller, and G. Paganga. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2:152-159. https://doi.org/10.1016/S1360-1385(97)01018-2
  28. Rochfort S. and J. Panozzo. 2007. Phytochemicals for health, the role of pulses. J. Agric. Food Chem. 55:7981-7994 https://doi.org/10.1021/jf071704w
  29. Santhakumar A.B., A.R. Kundur, S. Sabapathy, R. Stanley, and I. Singh. 2015. The potential of anthocyanin-rich Queen Garnet plum juice supplementation in alleviating thrombotic risk under induced oxidative stress conditions. J. Func. Foods 14:747-757. https://doi.org/10.1016/j.jff.2015.03.003
  30. Singh S. and R.P. Singh. 2008. In Vitro Methods of Assay of Antioxidants: An Overview Food Rev. Int. 24:392-415. https://doi.org/10.1080/87559120802304269
  31. Stanojevic L., M. Stankovic, V. Nikolic, L. Nikolic, D. Ristic, J. Canadanovic-Brunet and V. Tumbas. 2009. Antioxidant Activity and Total Phenolic and Flavonoid Contents of Hieracium pilosella L. Extracts. Sensors-Basel 9:5702-5714 https://doi.org/10.3390/s90705702
  32. Sthapit B.R. and V.R. Rao. 2009. Consolidating community's role in local crop development by promoting farmer innovation to maximise the use of local crop diversity for the well-being of people. p 669-676. In, 2009. International Society for Horticultural Science (ISHS), Leuven, Belgium.
  33. Sun T. and S.A. Tanumihardjo. 2007. An integrated approach to evaluate food antioxidant capacity. J. Food Sci. 72: R159-R165. https://doi.org/10.1111/j.1750-3841.2007.00552.x
  34. Upadhyaya H.D., K.N. Reddy, C.L.L. Gowda, and S. Singh. 2010. Identification and evaluation of vegetable type pigeonpea (Cajanus cajan (L.) Millsp.) in the world germplasm collection at ICRISAT genebank. Plant Genet. Resour.-C 8:162-170. https://doi.org/10.1017/S1479262110000122
  35. USDA. 2013. USDA Database for the Flavonoid Content of Selected Foods vol Release 3.1. USDA.
  36. van Treuren R. and T.J.L. van Hintum. 2003. Marker-assisted reduction of redundancy in germplasm collections: Genetic and economic aspects, p. 139-149. In: International Society for Horticultural Science (ISHS), Leuven, Belgium.
  37. Wang Y.-K., X. Zhang, G.-L. Chen, J. Yu, L.-Q. Yang, and Y.-Q. Gao. 2016. Antioxidant property and their free, soluble conjugate and insoluble-bound phenolic contents in selected beans. J. Func. Foods 24:359-372. https://doi.org/10.1016/j.jff.2016.04.026
  38. Waterhouse A. 2003. Current Protocols in Food Analytics Chemistry. New York, John Wiley.
  39. Xu B.J. and S.K. Chang. 2008. Total phenolic content and antioxidant properties of eclipse black beans (Phaseolus vulgaris L.) as affected by processing method. J. Food Sci. 73:H19-27. https://doi.org/10.1111/j.1750-3841.2007.00625.x
  40. Yao Y., W. Sang, M.J. Zhou, and G.X. Ren. 2010. Antioxidant and alpha-Glucosidase Inhibitory Activity of Colored Grains in China. J. Agric. Food Chem. 58:770-774. https://doi.org/10.1021/jf903234c
  41. Zhang H., R. Liu, and R. Tsao. 2016. Anthocyanin-rich phenolic extracts of purple root vegetables inhibit pro-inflammatory cytokines induced by H2O2 and enhance antioxidant enzyme activities in Caco-2 cells. J. Func. Foods 22:363-375. https://doi.org/10.1016/j.jff.2016.01.004