DOI QR코드

DOI QR Code

KOH Activated Nitrogen Doped Hard Carbon Nanotubes as High Performance Anode for Lithium Ion Batteries

  • Zhang, Qingtang (School of Petrochemical Engineering, Lanzhou University of Technology) ;
  • Li, Meng (School of Petrochemical Engineering, Lanzhou University of Technology) ;
  • Meng, Yan (School of Petrochemical Engineering, Lanzhou University of Technology) ;
  • Li, An (School of Petrochemical Engineering, Lanzhou University of Technology)
  • 투고 : 2018.02.05
  • 심사 : 2018.07.16
  • 발행 : 2018.11.10

초록

In situ nitrogen doped hard carbon nanotubes (NHCNT) were fabricated by pyrolyzing tubular nitrogen doped conjugated microporous polymer. KOH activated NHCNT (K-NHCNT) were also prepared to improve their porous structure. XRD, SEM, TEM, EDS, XPS, Raman spectra, $N_2$ adsorption-desorption, galvanostatic charging-discharge, cyclic voltammetry and EIS were used to characterize the structure and performance of NHCNT and K-NHCNT. XRD and Raman spectra reveal K-NHCNT own a more disorder carbon. SEM indicate that the diameters of K-NHCNT are smaller than that of NHCNT. TEM and EDS further indicate that K-NHCNT are hollow carbon nanotubes with nitrogen uniformly distributed. $N_2$ adsorption-desorption analysis reveals that K-NHCNT have an ultra high specific surface area of $1787.37m^2g^{-1}$, which is much larger than that of NHCNT ($531.98m^2g^{-1}$). K-NHCNT delivers a high reversible capacity of $918mAh\;g^{-1}$ at $0.6A\;g^{-1}$. Even after 350 times cycling, the capacity of K-NHCNT cycled after 350 cycles at $0.6A\;g^{-1}$ is still as high as $591.6mAh\;g^{-1}$. Such outstanding electrochemical performance of the K-NHCNT are clearly attributed by its superior characters, which have great advantages over those commercial available carbon nanotubes ($200-450mAh\;g^{-1}$) not only for its desired electrochemical performance but also for its easily and scaling-up preparation.

키워드

과제정보

연구 과제 주관 기관 : National Nature Science Foundation of China

참고문헌

  1. Scrosati, B., Hassoun, J., Sun, Y.-K. : Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4(9), 3287-3295 (2011) https://doi.org/10.1039/c1ee01388b
  2. Larcher, D., Tarascon, J.M. : Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7 (1), 19-29 (2015) https://doi.org/10.1038/nchem.2085
  3. Tarascon, J.-M., Armand, M. : Issues and challenges facing rechargeable lithium batteries. Nature 414, 359-367 (2001) https://doi.org/10.1038/35104644
  4. Balogun, M.-S., Qiu, W., Luo, Y., Meng, H., Mai, W., Onasanya, A., Olaniyi, T.K., Tong, Y. : A review of the development of full cell lithium-ion batteries: the impact of nanostructured anode materials. Nano Res. 9(10), 2823-2851 (2016) https://doi.org/10.1007/s12274-016-1171-1
  5. Zhang, Q., Mei, J., Wang, X., Tang, F., Fan, W., Lu, W. : High performance spinel $LiNi_{0.5}Mn_{1.5}O_4$ cathode material by lithium polyacrylate coating for lithium ion battery. Electrochim. Acta 143, 265-271 (2014) https://doi.org/10.1016/j.electacta.2014.08.030
  6. Guoping, W., Bolan, Z., Min, Y., Xiaoluo, X., Meizheng, Q., Zuolong, Y. : A modified graphite anode with high initial efficiency and excellent cycle life expectation. Solid State Ionics 176(9-10), 905-909 (2005) https://doi.org/10.1016/j.ssi.2004.11.009
  7. Bulusheva, L.G., Okotrub, A.V., Kurenya, A.G., Zhang, H., Zhang, H., Chen, X., Song, H. : Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon 49(12), 4013-4023 (2011) https://doi.org/10.1016/j.carbon.2011.05.043
  8. Li, X., Liu, J., Zhang, Y., Li, Y., Liu, H., Meng, X., Yang, J., Geng, D., Wang, D., Li, R., Sun, X. : High concentration nitrogen doped carbon nanotube anodes with superior $Li^+$ storage performance for lithium rechargeable battery application. J. Power Sources 197, 238-245 (2012) https://doi.org/10.1016/j.jpowsour.2011.09.024
  9. Seman, R.N.A.R., Azam, M.A., Mohamad, A.A. : Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors. Renew. Sustain. Energy Rev. 75, 644-659 (2017) https://doi.org/10.1016/j.rser.2016.10.078
  10. de las Casas, C., Li, W. : A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 208, 74-85 (2012) https://doi.org/10.1016/j.jpowsour.2012.02.013
  11. Yang, S., Huo, J., Song, H., Chen, X. : A comparative study of electrochemical properties of two kinds of carbon nanotubes as anode materials for lithium ion batteries. Electrochim. Acta 53(5), 2238-2244 (2008) https://doi.org/10.1016/j.electacta.2007.09.040
  12. Xiong, Z., Yun, Y.S., Jin, H.J. : Applications of carbon nanotubes for lithium ion battery anodes. Materials (Basel) 6(3), 1138-1158 (2013) https://doi.org/10.3390/ma6031138
  13. Kawasaki, S., Hara, T., Iwai, Y., Suzuki, Y. : Metallic and semiconducting single-walled carbon nanotubes as the anode material of Li ion secondary battery. Mater. Lett. 62(17-18), 2917-2920 (2008) https://doi.org/10.1016/j.matlet.2008.01.088
  14. Lee, B.-S., Son, S.-B., Park, K.-M., Yu, W.-R., Oh, K.-H., Lee, S.-H. : Anodic properties of hollow carbon nanofibers for Li-ion battery. J. Power Sources 199, 53-60 (2012) https://doi.org/10.1016/j.jpowsour.2011.10.030
  15. Zhou, X., Tang, J., Yang, J., Xie, J., Huang, B. : Seaweed-like porous carbon from the decomposition of polypyrrole nanowires for application in lithium ion batteries. J. Mater. Chem. A 1(16), 5037-5044 (2013) https://doi.org/10.1039/c3ta10557a
  16. Peng, Y.-T., Lo, C.-T. : Electrospun porous carbon nanofibers as lithium ion battery anodes. J. Solid State Electrochem. 19(11), 3401-3410 (2015) https://doi.org/10.1007/s10008-015-2976-7
  17. Gaddam, R.R., Yang, D., Narayan, R., Raju, K., Kumar, N.A., Zhao, X.S. : Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26, 346-352 (2016) https://doi.org/10.1016/j.nanoen.2016.05.047
  18. Kakunuri, M., Sharma, C.S. : Candle soot derived fractal-like carbon nanoparticles network as high-rate lithium ion battery anode material. Electrochim. Acta 180, 353-359 (2015) https://doi.org/10.1016/j.electacta.2015.08.124
  19. Zeng, S.-Z., Yao, Y., Zeng, X., He, Q., Zheng, X., Chen, S., Tu, W., Zou, J. : A composite of hollow carbon nanospheres and sulfur-rich polymers for lithium-sulfur batteries. J. Power Sources 357, 11-18 (2017) https://doi.org/10.1016/j.jpowsour.2017.04.092
  20. Zou, S., Xu, X., Zhu, Y., Cao, C. : Microwave-assisted preparation of hollow porous carbon spheres and as anode of lithium-ion batteries. Microporous Mesoporous Mater. 251, 114-121 (2017) https://doi.org/10.1016/j.micromeso.2017.05.062
  21. Mondal, A.K., Kretschmer, K., Zhao, Y., Liu, H., Fan, H., Wang, G. : Naturally nitrogen doped porous carbon derived from waste shrimp shells for high-performance lithium ion batteries and supercapacitors. Microporous Mesoporous Mater. 246, 72-80 (2017) https://doi.org/10.1016/j.micromeso.2017.03.019
  22. Li, M., Wu, Y., Zhao, F., Wei, Y., Wang, J., Jiang, K., Fan, S. : Cycle and rate performance of chemically modified super-aligned carbon nanotube electrodes for lithium ion batteries. Carbon 69, 444-451 (2014) https://doi.org/10.1016/j.carbon.2013.12.047
  23. Li, A., Lu, R.F., Wang, Y., Wang, X., Han, K.L., Deng, W.Q. : Lithium-doped conjugated microporous polymers for reversible hydrogen storage. Angew. Chem. Int. Ed. Engl. 49(19), 3330-3333 (2010) https://doi.org/10.1002/anie.200906936
  24. Chen, Y., Sun, H., Yang, R., Wang, T., Pei, C., Xiang, Z., Zhu, Z., Liang, W., Li, A., Deng, W. : Synthesis of conjugated microporous polymer nanotubes with large surface areas as absorbents for iodine and $CO_2$ uptake. J. Mater. Chem. A 3(1), 87-91 (2015) https://doi.org/10.1039/C4TA04235B
  25. Liu, H., Li, Q., Li, Q., Jin, W., Li, X., Hameed, A., Qiao, S. : Rational skeletal rigidity of conjugated microporous polythiophenes for gas uptake. Polym. Chem. 8(44), 6733-6740 (2017) https://doi.org/10.1039/C7PY01268C
  26. Vilela, F., Zhang, K., Antonietti, M. : Conjugated porous polymers for energy applications. Energy Environ. Sci. 5(7), 7819-7832 (2012) https://doi.org/10.1039/c2ee22002d
  27. Ma, B.C., Ghasimi, S., Landfester, K., Vilela, F., Zhang, K.A.I. : Conjugated microporous polymer nanoparticles with enhanced dispersibility and water compatibility for photocatalytic applications. J. Mater. Chem. A 3(31), 16064-16071 (2015) https://doi.org/10.1039/C5TA03820K
  28. Zhang, K., Kopetzki, D., Seeberger, P.H., Antonietti, M., Vilela, F. : Surface area control and photocatalytic activity of conjugated microporous poly(benzothiadiazole) networks. Angew. Chem. Int. Ed. Engl. 52(5), 1432-1436 (2013) https://doi.org/10.1002/anie.201207163
  29. Zhang, Q., Dai, Q., Li, M., Wang, X., Li, A. : Incorporation of MnO nanoparticles inside porous carbon nanotubes originated from conjugated microporous polymers for lithium storage. J. Mater. Chem. A 4(48), 19132-19139 (2016) https://doi.org/10.1039/C6TA08464H
  30. Wang, X., Wang, W., Zhu, Z., Yan, C., Zhang, Q. : Metal oxideembedded porous carbon nanoparticles as high-performance anode materials for lithium ion batteries. Ionics 23(12), 3255-3263 (2017) https://doi.org/10.1007/s11581-017-2134-6
  31. Ding, Y., Chen, L., Pan, P., Du, J., Fu, Z., Qin, C., Wang, F. : Nitrogen-doped carbon coated MnO nanopeapods as superior anode materials for lithium ion batteries. Appl. Surf. Sci. 422, 1113-1119 (2017) https://doi.org/10.1016/j.apsusc.2017.06.061
  32. Li, J., Zhang, F., Wang, C., Shao, C., Li, B., Li, Y., Wu, Q.-H., Yang, Y. : Self nitrogen-doped carbon nanotubes as anode materials for high capacity and cycling stability lithium-ion batteries. Mater. Des. 133, 169-175 (2017) https://doi.org/10.1016/j.matdes.2017.07.060
  33. Bao, L., Sun, H., Zhu, Z., Liang, W., Mu, P., Zang, J., Li, A. : Synthesis and properties of tubular-shape conjugated microporous polymers with high purity. Mater. Lett. 178, 5-9 (2016) https://doi.org/10.1016/j.matlet.2016.04.195
  34. Sun, H., La, P., Yang, R., Zhu, Z., Liang, W., Yang, B., Li, A., Deng, W. : Innovative nanoporous carbons with ultrahigh uptakes for capture and reversible storage of $CO_2$ and volatile iodine. J. Hazard. Mater. 321, 210-217 (2017) https://doi.org/10.1016/j.jhazmat.2016.09.015
  35. Liu, Y., Xue, J.S., Zheng, T., Dahn, J.R. : Mechanism of lithium insertion in hardcarbons prepared by phrolysis of epoxy resins. Carbon 34(2), 193-200 (1996) https://doi.org/10.1016/0008-6223(96)00177-7
  36. Wang, J., Kaskel, S. : KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22(45), 23710-23725 (2012) https://doi.org/10.1039/c2jm34066f
  37. Mao, Y., Duan, H., Xu, B., Zhang, L., Hu, Y., Zhao, C., Wang, Z., Chen, L., Yang, Y. : Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ. Sci. 5(7), 7950-7955 (2012) https://doi.org/10.1039/c2ee21817h
  38. Pu, J., Li, C., Tang, L., Li, T., Ling, L., Zhang, K., Xu, Y., Li, Q., Yao, Y. : Impregnation assisted synthesis of 3D nitrogen-doped porous carbon with high capacitance. Carbon 94, 650-660 (2015) https://doi.org/10.1016/j.carbon.2015.07.058
  39. Zhang, Y., Sun, K., Liang, Z., Wang, Y., Ling, L. : N-doped yolk-shell hollow carbon sphere wrapped with graphene as sulfur host for high-performance lithium-sulfur batteries. Appl. Surf. Sci. 427, 823-829 (2018) https://doi.org/10.1016/j.apsusc.2017.06.288

피인용 문헌

  1. Phosphate Adsorption from Solution by Zirconium-Loaded Carbon Nanotubes in Batch Mode vol.64, pp.6, 2019, https://doi.org/10.1021/acs.jced.9b00214
  2. Hard Carbon Anodes: Fundamental Understanding and Commercial Perspectives for Na‐Ion Batteries beyond Li‐Ion and K‐Ion Counterparts vol.11, pp.1, 2018, https://doi.org/10.1002/aenm.202002704
  3. Porous hard carbon microtubes from renewable cotton as high-performance anode material for lithium-ion batteries vol.32, pp.2, 2018, https://doi.org/10.1007/s10854-020-04932-0
  4. Sulfur-doped mesoporous carbon activated by sodium sulfate as a superior performance anode for lithium ion batteries vol.27, pp.3, 2021, https://doi.org/10.1007/s11581-020-03890-1