Acknowledgement
Supported by : University of Malaya
References
- Bell, L.E. : Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321 (5895), 1457-1461 (2008) https://doi.org/10.1126/science.1158899
- Sanz-Bobi, M.A., Palacios, R., Aguilera, A. : Potential use of small waste heat sources based on thermoelectricity: application to an overhead projector and a battery charger. In: Proceedings of 5th ETS, pp. 58-65 (1999)
-
Bashir, M.B.A., Said, S.M., Sabri, M.F.M., Shnawah, D.A., Elsheikh, M.H. : Recent advances on
$Mg_2Si_{1-x}Sn_x$ materials for thermoelectric generation. Renew. Sustain. Energy Rev. 37, 569-584 (2014) https://doi.org/10.1016/j.rser.2014.05.060 - Ovik, R., Long, B.D., Barma, M.C., Riaz, M., Sabri, M.F.M., Said, S.M., Saidur, R. : A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renew. Sustain. Energy Rev. 64, 635-659 (2016) https://doi.org/10.1016/j.rser.2016.06.035
- Snyder, G.J., Toberer, E.S. : Complex thermoelectric materials. Nat. Mater. 7(2), 105-114 (2008) https://doi.org/10.1038/nmat2090
- Visnow, E., Heinrich, C.P., Schmitz, A., de Boor, J., Leidich, P., Klobes, B., Hermann, R.P., Muller, W.E., Tremel, W. : On the true indium content of In-filled skutterudites. Inorg. Chem. 54(16), 7818-7827 (2015) https://doi.org/10.1021/acs.inorgchem.5b00799
- Yang, J., Stabler, F.R. : Automotive applications of thermoelectric materials. J. Electron. Mater. 38(7), 1245-1251 (2009) https://doi.org/10.1007/s11664-009-0680-z
- Rowe, D.M. : Thermoelectrics Handbook: Macro to Nano. CRC Press, Boca Raton (2005)
- Rowe, D.M., Bhandari, C.M. : Modern Thermoelectrics. Prentice Hall, Upper Saddle River (1983)
- Amatya, R., Ram, R.J. : Trend for thermoelectric materials and their earth abundance. J. Electron. Mater. 41(6), 1011-1019 (2012) https://doi.org/10.1007/s11664-011-1839-y
- Chen, K. : Synthesis and Thermoelectric Properties of Cu-Sb-S Compounds. Queen Mary University of London, United Kingdom (2016)
-
Mizoguchi, H., Hosono, H., Ueda, N., Kawazoe, H. : Preparation and electrical properties of
$Bi_2S_3$ whiskers. J. Appl. Phys. 78(2), 1376-1378 (1995) https://doi.org/10.1063/1.360315 - Zhao, L.D., Zhang, B.P., Liu, W.S., Zhang, H.L., Li, J.F. : Enhanced thermoelectric properties of bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering. J. Solid State Chem. 181(12), 3278-3282 (2008) https://doi.org/10.1016/j.jssc.2008.08.022
-
Ge, Z.H., Zhang, B.P., Yu, Z.X., Li, J.F. : Effect of spark plasma sintering temperature on thermoelectric properties of
$Bi_2S_3$ polycrystal. J. Mater. Res. 26(21), 2711-2718 (2011) https://doi.org/10.1557/jmr.2011.273 - Yu, Y.Q., Zhang, B.P., Ge, Z.H., Shang, P.P., Chen, Y.X. : Thermoelectric properties of Ag-doped bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering. Mater. Chem. Phys. 131(1), 216-222 (2011) https://doi.org/10.1016/j.matchemphys.2011.09.010
-
Ge, Z.H., Zhang, B.P., Liu, Y., Li, J.F. : Nanostructured
$Bi_{2-x}Cu_xS_3$ bulk materials with enhanced thermoelectric performance. Phys. Chem. Chem. Phys. 14(13), 4475-4481 (2012) https://doi.org/10.1039/c2cp23955h -
Kawamoto, Y., Iwasaki, H. : Thermoelectric properties of
$(Bi_{1-x}Sb_x)_2S_3$ with orthorhombics structure. J. Electron. Mater. 43(6), 1475-1479 (2014) https://doi.org/10.1007/s11664-013-2742-5 -
Zhang, L.J., Zhang, B.P., Ge, Z.H., Han, C.G. : Fabrication and properties of
$Bi_2S_{3-x}Se_x$ thermoelectric polycrystals. Solid State Commun. 162, 48-52 (2013) https://doi.org/10.1016/j.ssc.2013.03.013 - Sterzel, H.J. : Patent, in WO2006/089938A1 (2006)
-
Du, X., Shi, R., Ma, Y., Cai, F., Wang, X., Yuan, Z. : Enhanced thermoelectric performance of n-type
$Bi_2S_3$ with added ZnO for power generation. RSC Adv. 5(39), 31004-31009 (2015) https://doi.org/10.1039/C5RA01071C -
Biswas, K., Zhao, L.D., Kanatzidis, M.G. : Tellurium-free thermoelectric: the anisotropic n-type semiconductor
$Bi_2S_3$ . Adv. Energy Mater. 2(6), 634-638 (2012) https://doi.org/10.1002/aenm.201100775 - Du, X., Cai, F., Wang, X. : Enhanced thermoelectric performance of chloride doped bismuth sulfide prepared by mechanical alloying and spark plasma sintering. J. Alloy. Compd. 587, 6-9 (2014) https://doi.org/10.1016/j.jallcom.2013.10.185
-
Ge, Z.H., Qin, P., He, D.S., Chong, X., Feng, D., Ji, Y.H., Feng, J., He, J. : Highly enhanced thermoelectric properties of
$Bi/Bi_2S_3$ nanocomposites. ACS Appl. Mater. Interfaces 9(5), 4828-4834 (2017) https://doi.org/10.1021/acsami.6b14803 - Janghorban, K., Kirkaldy, J.S., Weatherly, G.C. : The Hume-Rothery size rule and double-well microstructures in gold-nickel. J. Phys. Condens. Matter 13(38), 8661 (2001) https://doi.org/10.1088/0953-8984/13/38/309
- Chen, Z.G., Han, G., Yang, L., Cheng, L., Zou, J. : Nanostructured thermoelectric materials: current research and future challenge. Progress Nat. Sci. Mater. Int. 22(6), 535-549 (2012) https://doi.org/10.1016/j.pnsc.2012.11.011
- Szczech, J.R., Higgins, J.M., Jin, S. : Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem. 21(12), 4037-4055 (2011) https://doi.org/10.1039/C0JM02755C
- Jung, S.J., Kim, J.H., Kim, D.I., Kim, S.K., Park, H.H., Kim, J.S., Hyun, D.B., Baek, S.H. : Strain-assisted, low-temperature synthesis of high-performance thermoelectric materials. Phys. Chem. Chem. Phys. 16(8), 3529-3533 (2014) https://doi.org/10.1039/c3cp54969k
- Zhang, Q., Zhang, Q., Chen, S., Liu, W., Lukas, K., Yan, X., Wang, H., Wang, D., Opeil, C., Chen, G., Ren, Z. : Suppression of grain growth by additive in nanostructured p-type bismuth antimony tellurides. Nano Energy 1(1), 183-189 (2012) https://doi.org/10.1016/j.nanoen.2011.10.006
- Petricek, V., Dusek, M., Palatinus, L. : Crystallographic computing system JANA2006: general features. Zeitschrift fur Kristallographie-Crystalline Materials 229, 345-352 (2014)
- Vegard, L. : Die konstitution der mischkristalle und die raumfullung der atome. Zeitschrift fur Physik 5(1), 17-26 (1921) https://doi.org/10.1007/BF01349680
- Pearson, G.L., Bardeen, J. : Electrical properties of pure silicon and silicon alloys containing boron and phosphorus. Phys. Rev. 75(5), 865 (1949) https://doi.org/10.1103/PhysRev.75.865
-
Ge, Z.H., Zhang, B.P., Yu, Y.Q., Shang, P.P. : Fabrication and properties of
$Bi_{2-x}Ag_{3x}S_3$ thermoelectric polycrystals. J. Alloy. Compd. 514, 205-209 (2012) https://doi.org/10.1016/j.jallcom.2011.11.072 - Lee, H., Vashaee, D., Wang, D.Z., Dresselhaus, M.S., Ren, Z.F., Chen, G. : Effects of nanoscale porosity on thermoelectric properties of SiGe. J. Appl. Phys. 107(9), 094308 (2010) https://doi.org/10.1063/1.3388076
-
Du, Z., Zhu, T., Chen, Y., He, J., Gao, H., Jiang, G., Tritt, T.M., Zhao, X. : Roles of interstitial Mg in improving thermoelectric properties of Sb-doped
$Mg_2Si_0.4}Sn_{0.6}$ solid solutions. J. Mater. Chem. 22(14), 6838-6844 (2012) https://doi.org/10.1039/c2jm16694a - Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., Phillpot, S.R. : Nanoscale thermal transport. J. Appl. Phys. 93(2), 793-818 (2003) https://doi.org/10.1063/1.1524305
- Goldsmid, H.J., Penn, A.W. : Boundary scattering of phonons in solid solutions. Phys. Lett. A 27(8), 523-524 (1968) https://doi.org/10.1016/0375-9601(68)90898-0