DOI QR코드

DOI QR Code

In vitro Metabolism of Methallylescaline in Human Hepatocytes Using Liquid Chromatography-High Resolution Mass Spectrometry

  • Kim, Sunjoo (BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea) ;
  • Kim, Ju-Hyun (College of Pharmacy, Yeungnam University) ;
  • Kim, Dong Kyun (BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea) ;
  • Lee, Jaesin (National Forensic Service) ;
  • In, Sangwhan (National Forensic Service) ;
  • Lee, Hye Suk (BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea)
  • Received : 2018.09.07
  • Accepted : 2018.09.28
  • Published : 2018.09.30

Abstract

Methallylescaline, 2-(3,5-dimethoxy-4-[(2-methylprop-2-en-1-yl)oxy]phenyl)ethanamine, is a new psychoactive substance with potent agonist of 5-HT receptor, but there is little information on its pharmacological effect, metabolism, and toxicity. It is necessary to characterize the metabolic profiling of methallylescaline in human hepatocytes using liquid chromatography-high resolution mass spectrometry. Methallylescaline was metabolized to three hydroxy-methallylescaline (M1-M3) and dihydroxy-methallylescaline (M4) via hydroxylation in human hepatocytes. CYP2D6, CYP2J2, CYP1A2, and CYP3A4 enzymes were responsible for the metabolism of methallylescaline. The metabolites as well as methallylescaline would be used for monitoring the abuse of methallylescaline.

Keywords

References

  1. UNODC. World Drug Report 2018; See http://www.unodc.org/wdr2018/.
  2. Halberstadt, A. L.; Geyer, M. A. Neuropharmacology 2014, 77, 200. https://doi.org/10.1016/j.neuropharm.2013.08.025
  3. Halberstadt, A. L. Behav. Brain Res. 2015, 277, 99. https://doi.org/10.1016/j.bbr.2014.07.016
  4. Braden, M. R.; Parrish, J. C.; Naylor, J. C.; Nichols, D. E. Mol. Pharmacol. 2006, 70, 1956. https://doi.org/10.1124/mol.106.028720
  5. Hansen, M.; Phonekeo, K.; Paine, J. S.; Leth-Petersen, S.; Begtrup, M.; Brauner-Osborne, H.; Kristensen, J. L. ACS Chem. Neurosci. 2014, 5, 243. https://doi.org/10.1021/cn400216u
  6. EMCDDA. EMCDDA-Europol 2014 Annual Report on the implementation of Council Decision 2005/387/JHA; See http://www.emcdda.europa.eu/publications/implementation-reports/2014_en.
  7. Boumrah, Y.; Humbert, L.; Phanithavong, M.; Khimeche, K.; Dahmani, A.; Allorge, D. Drug Test. Anal. 2016, 8, 248. https://doi.org/10.1002/dta.1865
  8. Caspar, A. T.; Brandt, S. D.; Stoever, A. E.; Meyer, M. R.; Maurer, H. H. J. Pharm. Biomed. Anal. 2017, 134, 158. https://doi.org/10.1016/j.jpba.2016.11.040
  9. Kim, J. H.; Kim, H. S.; Kong, T. Y.; Lee, J. Y.; Kim, J. Y.; In, M. K.; Lee, H. S. J. Pharm. Biomed. Anal. 2016, 119, 50. https://doi.org/10.1016/j.jpba.2015.11.023
  10. Wohlfarth, A.; Roman, M.; Andersson, M.; Kugelberg, F. C.; Diao, X.; Carlier, J.; Kronstrand, R. Drug Test. Anal. 2017, 9, 680. https://doi.org/10.1002/dta.2044
  11. Kong, T. Y.; Kim, J. H.; Kim, D. K.; Lee, H. S. Arch. Pharm. Res. 2018, 41, 691. https://doi.org/10.1007/s12272-018-1055-x
  12. Jeong, H. U.; Kim, J. H.; Kong T. Y.; Choi, W. G.; Lee, H. S. Arch. Pharm. Res. 2016, 39, 516. https://doi.org/10.1007/s12272-016-0731-y
  13. Davies, B.; Morris, T. Pharm. Res. 1993, 10, 1093. https://doi.org/10.1023/A:1018943613122
  14. Charalampous, K. D.; Walker, K. E.; Kinross-Wright, J. Psychopharmacologia 1966, 9, 48. https://doi.org/10.1007/BF00427703
  15. Kanamori, T.; Nagasawa, K.; Kuwayama, K.; Tsujikawa, K.; Iwata, Y. T.; Inoue, H. J. Forensic. Sci. 2013, 58, 279. https://doi.org/10.1111/j.1556-4029.2012.02289.x