DOI QR코드

DOI QR Code

Characterization of Molecular Composition of Bacterial Melanin Isolated from Streptomyces glaucescens Using Ultra-High-Resolution FT-ICR Mass Spectrometry

  • Choi, Mira (Biomedical Omics Center, Korea Basic Science Institute) ;
  • Choi, A Young (Biomedical Omics Center, Korea Basic Science Institute) ;
  • Ahn, Soo-Yeon (Department of Environmental Engineering, College of Engineering, Ajou University) ;
  • Choi, Kwon-Young (Department of Environmental Engineering, College of Engineering, Ajou University) ;
  • Jang, Kyoung-Soon (Biomedical Omics Center, Korea Basic Science Institute)
  • Received : 2018.08.14
  • Accepted : 2018.09.09
  • Published : 2018.09.30

Abstract

In this study, the chemical composition of bacterial melanin isolated from the Streptomyces glaucescens strain was elucidated by ultra-high-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Ultra-high-resolution mass profiles of the microbial melanin product were acquired using a 15 Tesla FT-ICR mass spectrometer in positive and negative ion modes via electrospray ionization to obtain more complete descriptions of the molecular compositions of melanin-derived organic constituents. A mass resolving power of 500,000 (at m/z 400) was achieved for all spectra while collecting 400 scans per sample with a 4 M transient. The results of this analysis revealed that the melanin pigment isolated from S. glaucescens predominantly exhibits CHON and CHO species, which belong to the proteins class of compounds, with the mean C/O and C/N ratios of 4.3 and 13.1, thus suggesting that the melanin could be eumelanin. This analytical approach could be utilized to investigate the molecular compositions of a variety of natural or synthetic melanins. The compositional features of melanins are important for understanding their formation mechanisms and physico-chemical properties.

Keywords

References

  1. Chedekel, M. R.; Ahene, A. B.; Zeise, L. Pigment Cell Res. 1992, 5, 240. https://doi.org/10.1111/j.1600-0749.1992.tb00543.x
  2. Solano, F. New J. Sci. 2014, 2014, 498276.
  3. Plonka, P. M.; Grabacka, M. Acta Biochim. Pol. 2006, 53, 429.
  4. Nosanchuk, J. D.; Casadevall, A. Antimicrob. Agents Chemother. 2006, 50, 3519. https://doi.org/10.1128/AAC.00545-06
  5. Brenner, M.; Hearing, V. J. Photochem. Photobiol. 2008, 84, 539. https://doi.org/10.1111/j.1751-1097.2007.00226.x
  6. Riley, P. A. Int. J. Biochem. Cell Biol. 1997, 29, 1235. https://doi.org/10.1016/S1357-2725(97)00013-7
  7. Jacobson, E. S.; Tinnell, S. B. J. Bacteriol. 1993, 175, 7102. https://doi.org/10.1128/jb.175.21.7102-7104.1993
  8. El-Naggar, N. E.; El-Ewasy, S. M. Sci. Rep. 2017, 7, 42129. https://doi.org/10.1038/srep42129
  9. Prados-Rosales, R.; Toriola, S.; Nakouzi, A.; Chatterjee, S.; Stark, R.; Gerfen, G.; Tumpowsky, P.; Dadachova, E.; Casadevall, A. J. Agric. Food Chem. 2015, 63, 7326. https://doi.org/10.1021/acs.jafc.5b02713
  10. Antony, R.; Grannas, A. M.; Willoughby, A. S.; Sleighter, R. L.; Thamban, M.; Hatcher, P. G. Environ. Sci. Technol. 2014, 48, 6151. https://doi.org/10.1021/es405246a
  11. Cho, Y.; Ahmed, A.; Islam, A.; Kim, S. Mass Spectrom. Rev. 2015, 34, 248. https://doi.org/10.1002/mas.21438
  12. Guigue, J.; Harir, M.; Mathieu, O.; Lucio, M.; Ranjard, L.; Leveque, J.; Schmitt-Kopplin, P. Biogeochemistry 2016, 128, 307. https://doi.org/10.1007/s10533-016-0209-5
  13. Ksionzek, K. B.; Lechtenfeld, O. J.; McCallister, S. L.; Schmitt-Kopplin, P.; Geuer, J. K.; Geibert, W.; Koch, B. P. Science 2016, 354, 456. https://doi.org/10.1126/science.aaf7796
  14. Lobodin, V. V.; Juyal, P.; McKenna, A. M.; Rodgers, R. P.; Marshall, A. G. Energy Fuels 2014, 28, 6841. https://doi.org/10.1021/ef501683w
  15. Mazur, D. M.; Harir, M.; Schmitt-Kopplin, P.; Polyakova, O. V.; Lebedev, A. T. Sci. Total Environ. 2016, 557, 12.
  16. Marshall, A. G.; Blakney, G. T.; Chen, T.; Kaiser, N. K.; McKenna, A. M.; Rodgers, R. P.; Ruddy, B. M.; Xian, F. Mass Spectrom. (Tokyo) 2013, 2, S0009.
  17. Kim, S.; Kramer, R. W.; Hatcher, P. G. Anal. Chem. 2003, 75, 5336. https://doi.org/10.1021/ac034415p
  18. Wu, Z.; Rodgers, R. P.; Marshall, A. G. Anal. Chem. 2004, 76, 2511. https://doi.org/10.1021/ac0355449
  19. Jeong, H. J.; Cha, J. Y.; Choi, J. H.; Jang, K. S.; Lim, J.; Kim, W. Y.; Seo, D. C.; Jeon, J. R. ACS Omega 2018, 3, 7441. https://doi.org/10.1021/acsomega.8b00697
  20. Cha, J. Y.; Kim, T. W.; Choi, J. H.; Jang, K. S.; Khaleda, L.; Kim, W. Y.; Jeon, J. R. J. Agric. Food Chem. 2017, 65, 1167. https://doi.org/10.1021/acs.jafc.6b04700
  21. Choi, J. H.; Kim, Y. G.; Lee, Y. K.; Pack, S. P.; Jung, J. Y.; Jang, K. S. Biotechnol. Bioprocess Eng. 2017, 22, 637. https://doi.org/10.1007/s12257-017-0121-4
  22. Choi, J. H.; Ryu, J.; Jeon, S.; Seo, J.; Yang, Y. H.; Pack, S. P.; Choung, S.; Jang, K. S. Environ. Pollut. 2017, 225, 329. https://doi.org/10.1016/j.envpol.2017.02.058
  23. Koch, B. P.; Witt, M.; Engbrodt, R.; Dittmar, T.; Kattner, G. Geochim. Cosmochim. Acta 2005, 69, 3299. https://doi.org/10.1016/j.gca.2005.02.027