DOI QR코드

DOI QR Code

수소 생산 규모 300 m3 h-1급 글리세롤 수증기 개질반응에 대한 경제적 불확실성 분석

Economic Evaluation with Uncertainty Analysis of Glycerol Steam Reforming for the H2 Production Capacity of 300 m3 h-1

  • 허주헌 (대구가톨릭대학교 신소재화학공학과) ;
  • 이보름 (대구가톨릭대학교 신소재화학공학과) ;
  • 김세화 (대구가톨릭대학교 신소재화학공학과) ;
  • 강성묵 (대구가톨릭대학교 전자전기공학부) ;
  • 임한권 (울산과학기술원 에너지 및 화학공학부)
  • Heo, Juheon (Department of Advanced Materials and Chemical Engineering, Catholic University of Daegu) ;
  • Lee, Boreum (Department of Advanced Materials and Chemical Engineering, Catholic University of Daegu) ;
  • Kim, Sehwa (Department of Advanced Materials and Chemical Engineering, Catholic University of Daegu) ;
  • Kang, Sung-Mook (School of Electronic and Electrical Engineering, Catholic University of Daegu) ;
  • Lim, Hankwon (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology)
  • 투고 : 2018.05.10
  • 심사 : 2018.07.12
  • 발행 : 2018.10.10

초록

본 논문에서는 수소 생산 규모 $300m^3h^{-1}$급 글리세롤 수증기 개질반응에 대한 경제적 불확실성 분석을 Monte-Carlo 시뮬레이션 방법을 이용하여 수행하였다. 핵심 경제적 인자의 변동(${\pm}10-{\pm}40%$)에 따른 수소 생산 단가의 변동을 확인하였으며, 기존 수소 생산 단가인 5.10 $ $kgH{_2}^{-1}$를 얻기 위한 확률인 30.9%를 구하였다. 또한 설비투자비용(${\pm}20%$), 연간운영비용(${\pm}20%$), 수익(${\pm}20%$) 및 할인율의 변동(2-10%)에 따른 비용 편익비의 변동을 확인하였으며, 본 공정이 경제적 타당성이 있기 위해서는 비용 편익비의 값이 1 이상이여야 하며 이를 얻기 위한 확률 범위는 할인율의 변동에 따라 17-55%로 나타났다.

In this paper, an economic evaluation with the uncertainty analysis using a Monte-Carlo simulation method was performed for the glycerol steam reforming to produce $H_2$ at a capacity of $300m^3h^{-1}$. Fluctuations in a unit $H_2$ production cost were identified based on the variation of key economic factors at ${\pm}10-{\pm}40%$ and the probability of 30.9% was obtained for a previously reported unit $H_2$ production cost of 5.10 $ $kgH{_2}^{-1}$. In addition, fluctuations in the B/C ratio were obtained by varying the fixed capital investment (${\pm}20%$), cost of manufacturing (${\pm}20%$), revenue (${\pm}20%$), and discount rate (2-10%) and the probability ranging from 17 to 55% was observed to meet a minimum B/C ratio of 1 for the economic feasibility of the glycerol steam reforming to produce $H_2$.

키워드

참고문헌

  1. M. E. Sad, H. A. Duarte, C. Vignatti, C. L. Padro, and C. R. Apesteguia, Steam reforming of glycerol: Hydrogen production optimization, Int. J. Hydrogen Energy, 40, 6097-6106 (2015). https://doi.org/10.1016/j.ijhydene.2015.03.043
  2. M. S. Masnadi, R. Habibi, J. Kopyscinski, J. M. Hill, X. Bi, J. Lim, N. Ellis, and J. R. Grace, Fuel characterization and co-pyrolysis kinetics of biomass and fossil fuels, Fuel, 117, 1204-1214 (2014). https://doi.org/10.1016/j.fuel.2013.02.006
  3. P. D. Vaidya and A. E. Rodrigues, Glycerol reforming for hydrogen production: A review, Chem. Eng. Technol., 32, 1463-1469 (2009). https://doi.org/10.1002/ceat.200900120
  4. X. Lv, J. Lin, L. Luo, D. Zhang, S. Lei, W. Xiao, Y. Xu, Y. Gong, and Z. Liu, Enhanced enzymatic saccharification of sugarcane bagasse pretreated by sodium methoxide with glycerol, Bioresour. Technol., 249, 226-233 (2018). https://doi.org/10.1016/j.biortech.2017.09.137
  5. A. Hejna, P. Kosmela, K. Formela, L. Piszczyk, and J. T. Haponiuuk, Potential applications of crude glycerol in polymer technology-Current state and perspectives, Renew. Sustain. Energy Rev., 66, 449-475 (2016). https://doi.org/10.1016/j.rser.2016.08.020
  6. M. Yus, J. Soler, J. Herguido, and M. Menendez, Glycerol steam reforming with low steam/glycerol ratio in a two-zone fluidized bed reactor, Catal. Today, 299, 317-327 (2018). https://doi.org/10.1016/j.cattod.2017.08.040
  7. S. Veiga, R. Faccio, D. Segobia, C. Apesteguia, and J. Bussi, Hydrogen production by crude glycerol steam reforming over Ni-La-Ti mixed oxide catalysts, Int. J. Hydrogen Energy, 42, 30525-30534 (2017). https://doi.org/10.1016/j.ijhydene.2017.10.118
  8. L. Pastor-Perez and A. Sepulveda-Escribano, Low temperature glycerol steam reforming on bimetallic PtSn/C catalysts: On the effect of the Sn content, Fuel, 194, 222-228 (2017). https://doi.org/10.1016/j.fuel.2017.01.023
  9. M. Voldsund, K. Jordal, and R. Anantharaman, Hydrogen production with $CO_2$ capture, Int. J. Hydrogen Energy, 41, 4969-4992 (2016). https://doi.org/10.1016/j.ijhydene.2016.01.009
  10. N. Hajjaji, A. Chahbani, Z. Khila, and M.-N. Pons, A comprehensive energy-exergy-based assessment and parametric study of a hydrogen production process using steam glycerol reforming, Energy, 64, 473-483 (2014). https://doi.org/10.1016/j.energy.2013.10.023
  11. I. N. Buffoni, M. N. Gatti, G. F. Santori, F. Pompeo, and N. N. Nichio, Hydrogen from glycerol steam reforming with a platinum catalyst supported on a $SiO_2$-C composite, Int. J. Hydrogen Energy, 42, 12967-12977 (2017). https://doi.org/10.1016/j.ijhydene.2017.04.047
  12. A.-M. Cormos and C.-C. Cormos, Techno-economic and environmental performances of glycerol reforming for hydrogen and power production with low carbon dioxide emissions, Int. J. Hydrogen Energy, 42, 7798-7810 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.172
  13. L. Ou, B. Li, Q. Dang, S. Jones, R. Brown, and M. M. Wright, Understanding uncertainties in the economic feasibility of transportation fuel production using biomass gasification and mixed alcohol synthesis, Energy Technol., 4, 441-448 (2016). https://doi.org/10.1002/ente.201500367
  14. G. Di Lorenzo, P. Pilidis, J. Witton, and D. Probert, Monte-Carlo simulation of investment integrity and value for power-plants with carbon-capture, Appl. Energy, 98, 467-478 (2012). https://doi.org/10.1016/j.apenergy.2012.04.010
  15. B. Lee, J. Heo, N.-H. Choi, C. Moon, S. Moo, and H. Lim, Economic evaluation with uncertainty analysis using a Monte-Carlo simulation method for hydrogen production from high pressure PEM water electrolysis in Korea, Int. J. Hydrogen Energy, 42, 24612-24619 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.033
  16. J. Heo and H. Lim, Techno-economic analysis of glycerol steam reforming for $H_2$ production capacity of $300m^3h^{-1}$, Appl. Chem. Eng., 29, 209-214 (2018).
  17. R. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz, and D. Bhattacharyya, Analysis, Synthesis, and Design of Chemical Processes, 4th ed., Pearson Press, New Jersey, USA (2013).

피인용 문헌

  1. 액화 공기 에너지 저장 기술(LAES)의 경제성 분석 vol.16, pp.1, 2020, https://doi.org/10.7849/ksnre.2020.2031