DOI QR코드

DOI QR Code

물/1,2-Dichloroethane 계면에서 Cefotiam 약물 이온의 전이 반응 연구 및 약물 센서에 응용

Electrochemical Study on Transfer Reaction of Ionizable Cefotiam across a Water/1,2-dichloroethane Interface and Drug Sensing Applications

  • 리우샤오원 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소) ;
  • 신타제시카 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소) ;
  • 이혜진 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소)
  • Liu, XiaoYun (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Jeshycka, Shinta (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Lee, Hye Jin (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University)
  • 투고 : 2018.06.14
  • 심사 : 2018.07.12
  • 발행 : 2018.10.10

초록

본 논문은 편극화된 물/1,2-dichloroethane (1,2-DCE) 계면에서 세포티암(cefotiam, CTM) 항생제 약물의 전이 반응을 전기화학적 방법으로 조사하였다. CTM 약물은 물의 pH에 따라 서로 다른 전하를 가지고 이온화되며 각 pH에서 이들 이온의 전이 반응을 연구함으로써 처음으로 CTM 약물이 좀 더 우세하게 물 또는 유기층에 분배되는 정도를 나타내는 상 분배 도표를 세웠다. 이를 바탕으로 CTM 약물의 형식 전이 전위값 및 형식 Gibbs 전이 에너지 값을 포함한 열역학적 정보와 함께 분배 계수를 포함한 중요한 약물동태학 정보를 얻었다. 특히 pH 3.0 수용액에서 양전하를 띠는 CTM 이온의 전이 반응을 순환전압전류법으로 조사한 결과 CTM 농도에 따라 측정한 전류 값이 비례하여 증가한다는 점을 확인하였다. 이를 바탕으로 CTM 이온을 정량 분석 가능한 센서를 개발하였다. 휴대성과 이동성을 보완하기 위해 polyethylene terephthalate 필름에 마이크로홀을 만들어 지지체로 사용하고, 1,2-DCE 유기용매를 polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) 유기성 젤로 대체하여 도포하는 방식으로 센서를 제작하였다. 상기 센서를 이용하여 CTM 약물을 $1{\mu}M$에서 $10{\mu}M$까지 정량 분석할 수 있었다.

In this article, electrochemical investigation of the transfer reaction of ionizable cefotiam (CTM), an antibiotic molecule across a polarized water/1,2-dichloroethane (water/1,2-DCE) interface was studied. Ion partition diagram providing the preferred charged form of CTM in either water or 1,2-DCE phase was established via the voltammetric evaluation of the transfer process of differently charged CTM species depending upon the pH variation of aqueous solutions. Thermodynamic information including the formal transfer potential and formal Gibbs transfer energy values in addition to important pharmacokinetics including partition coefficients of ionizable CTM were also evaluated. In particular, the current associated with the transfer of CTM present at pH 3.0 aqueous solution proportionally increased with respect to the CTM concentration which was further used for developing CTM sensitive ion sensor. In order to improve the portability and convenient usage, a single microhole interface fabricated in a supportive polyethylene terephthalate film was used of which hole was filled with a polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel replacing 1,2-DCE, a toxic organic solvent. A dynamic range of $1-10{\mu}M$ CTM was obtained.

키워드

참고문헌

  1. K. Tsuchiya, M. Kida, M. Kondo, H. Ono, M. Takeuchi, and T. Nishi, SCE-963, a new broad-spectrum cephalosporin: In vitro and in vivo antibacterial activities, Antimicrob. Agents Chemother., 14, 551-568 (1978).
  2. T. Iwahi and K. Tsuchiya, Comparative activities of cefotiam and cefazolin against urinary tract infections with Proteus mirabilis in mice, Antimicrob. Agents Chemother., 18, 257-263 (1980). https://doi.org/10.1128/AAC.18.2.257
  3. M. Nakao, T. Nishi, and K. Tsuchiya, In Vitro and In Vivo Morphological Response of Klebsiella pneumoniae to Cefotiam and Cefazolin, Antimicrob. Agents Chemother., 19, 901-910 (1981). https://doi.org/10.1128/AAC.19.5.901
  4. B. Watt and F. V. Brown, In-Vitro activity of cefotiam against bacteria of clinical interest, J. Antimicrob. Chemother., 10, 391-395 (1982). https://doi.org/10.1093/jac/10.5.391
  5. P. C. Fuchs, A. L. Barry, R. N. Jones, and C. Thornsberry, Cefotiam susceptibility testing criteria, J. Clin. Microbiol., 22, 1045-1047 (1985).
  6. J. M. Brogard, F. Jehl, B. Willemin, A. M. Lamalle, J. F. Blickle, and H. Monteil, Clinical Pharmacokinetics of cefotiam, Clin. Pharmacokinet., 17, 163-174 (1989). https://doi.org/10.2165/00003088-198917030-00003
  7. F. D.-M. P. Pehourcq, A. Radouane, L. Labat, and B. Bannwarth, Influence of lipophilicity on the protein binding affinity of cephalosporins, Pharm. Res., 12, 1535-1538 (1995). https://doi.org/10.1023/A:1016204025071
  8. S. Tawara, S. Matsumoto, Y. Matsumoto, T. Kamimura, and S. Goto, Structure-binding relationship and binding sites of cephalosporins in human serum albumin, J. Antibiot., 45, 1346-1357 (1992). https://doi.org/10.7164/antibiotics.45.1346
  9. A. Nasal, D. Siluk, and R. Kaliszan, Chromatographic retention parameters in medicinal chemistry and molecular pharmacology, Curr. Med. Chem., 10, 381-426 (2003). https://doi.org/10.2174/0929867033368268
  10. D. Dellis, C. Giaginis, and A. Tsantili-Kakoulidou, Physicochemical profile of nimesulide exploring the interplay of lipophilicity, solubility and ionization, J. Pharm. Biomed. Anal., 44, 57-62 (2007). https://doi.org/10.1016/j.jpba.2007.01.035
  11. C. B. Fox, R. A. Horton, and J. M. Harris, Detection of drug-membrane interactions in individual phospholipid vesicles by confocal Raman microscopy, Anal. Chem., 78, 4918-4924 (2006). https://doi.org/10.1021/ac0605290
  12. G. Bouchard, P.-A. Carrupt, B. Testa, V. Gobry, and H. H. Girault, Lipophilicity and solvation of anionic drugs, Chem. Eur. J., 8, 3478-3484 (2002). https://doi.org/10.1002/1521-3765(20020802)8:15<3478::AID-CHEM3478>3.0.CO;2-U
  13. F. Reymond, V. Chopineaux-Courtois, G. Steyaert, G. Bouchard, P.-A. Carrupt, B. Testa, and H. H. Girault, Ionic partition diagrams of ionisable drugs: pH-lipophilicity profiles, transfer mechanisms and charge effects on solvation, J. Electroanal. Chem., 462, 235-250 (1999). https://doi.org/10.1016/S0022-0728(98)00418-5
  14. G. Bouchard, A. Pagliara, G. P. van Balen, P.-A. Carrupt, B. Testa, V. Gobry, H. H. Girault, G. Caron, G. Ermondi, and R. Fruttero, Ionic partition diagram of the zwitterionic antihistamine cetirizine, HeIv. Chim. Acta, 84, 375-387 (2001). https://doi.org/10.1002/1522-2675(20010228)84:2<375::AID-HLCA375>3.0.CO;2-4
  15. V. Chopineaux-Courtois, F. Reymond, G. Bouchard, P.-A. Carrupt, B. Testa, and H. H. Girault, Effects of charge and intramolecular structure on the lipophilicity of nitrophenols, J. Am. Chem. Soc., 121, 1743-1747 (1999). https://doi.org/10.1021/ja9836139
  16. R. P. Nia, B. Su, M. A. Mendez, J.-M. Barbe, Z. Samec, and H. H. Girault, Ionic partition diagram of tetraphenylporphyrin at the water/1,2-dichloroethane interface, J. Electroanal. Chem., 656, 147-151 (2011). https://doi.org/10.1016/j.jelechem.2010.12.001
  17. G. Bouchard, A. Pagliara, P.-A. Carrupt, B. Testa, V. Gobry, and H. H. Girault, Theoretical and experimental exploration of the lipophilicity of zwitterionic drugs in the 1,2-dichloroethane/ water system, Pharm. Res., 19, 1150-1159 (2002). https://doi.org/10.1023/A:1019846125723
  18. M. Zhang, P. Sun, Y. Chen, F. Li, Z. Gao, and Y. Shao, Study of ionizable drugs transfer across the water/1,2-dichloroethane interface with phase volume ratio equal to unity using a three-electrode system, Chin. Sci. Bull., 48, 1234-1239 (2003).
  19. M. Zhang, P. Sun, Y. Chen, F. Li, Z. Gao, and Y. Shao, Studies of effect of phase volume ratio on transfer of ionizable species across the water/1,2-dichloroethane interface by a three-electrode setup, Anal. Chem., 75, 4341-4345 (2003). https://doi.org/10.1021/ac0263824
  20. F. Reymond, G. Steyaert, P.-A. Carrupt, B. Testa, and H. H. Girault, Mechanism of transfer of a basic drug across the water/l,2-dichloroethane interface: The case of quinidine, Helv. Chim. Acta, 79, 101-117 (1996). https://doi.org/10.1002/hlca.19960790111
  21. F. Reymond, G. Steyaert, P.-A. Carrupt, D. Morin, J.-P. Tillement, H. H. Girault, and B. Testa, The pH-partition profile of the anti-ischemic drug trimetazidine may explain its reduction of intraellular acidosis, Pharm. Res., 16, 616-624 (1999). https://doi.org/10.1023/A:1018899802836
  22. F. Reymond, G. Steyaert, P.-A. Carrupt, B. Testa, and H. Girault, Ionic partition diagrams: A potential-pH representation, J. Am. Chem. Soc., 118, 11951-11957 (1996). https://doi.org/10.1021/ja962187t
  23. M. Velazquez-Manzanares, J. Amador-Hernandez, C. Cisneros-Cisneros, and K. A. Heredia-Lezama, Triazine herbicides transfer at the water/1,2-dichloroethane interface, J. Electrochem. Soc., 155, 218-222 (2008).
  24. I. Hatay, B. Su, F. Li, M. A. Mendez, T. Khoury, C. P. Gros, J.-M. Barbe, M. Ersoz, Z. Samec, and H. H. Girault, Proton- coupled oxygen reduction at liquid-liquid interfaces catalyzed by cobalt porphine, J. Am. Chem. Soc., 131, 13453-13459 (2009). https://doi.org/10.1021/ja904569p
  25. M. A. Deryabina, S. H. Hansen, and H. Jensen, Molecular interactions in lipophilic environments studied by electrochemistry at interfaces between immiscible electrolyte solutions, Anal. Chem., 80, 203-208 (2008). https://doi.org/10.1021/ac071276t
  26. Z. Samec, V. Marecek, J. Koryta, and M. W. Khalil, Investigation of ion transfer across the interface between two immiscible electrolyte solutions by cyclic voltammetry, J. Electroanal. Chem., 83, 393-397 (1977). https://doi.org/10.1016/S0022-0728(77)80186-1
  27. S. Liu, Q. Li, and Y. Shao, Electrochemistry at micro- and nanoscopic liquid/liquid interfaces, Chem. Soc. Rev., 40, 2236-2253 (2011). https://doi.org/10.1039/c0cs00168f
  28. S. N. Faisal, C. M. Pereira, S. Rho, and H. J. Lee, Amperometric proton selective sensors utilizing ion transfer reactions across a microhole liquid/gel interface, Phys. Chem. Chem. Phys., 12, 15184-15189 (2010). https://doi.org/10.1039/c0cp00750a
  29. Y. Yoshimura, N. Hamaguchi, and T. Yashiki, Synthesis and relationship between physicochemical properties and oral absorption of pivaloyloxymethyl esters of parenteral cephalosporins, Int. J. Pharm., 23, 117-129 (1985). https://doi.org/10.1016/0378-5173(85)90003-1
  30. M. C. Rouan, F. Abadie, A. Leclerc, and F. Juge, Systematic approach to the determination of cephalosporins in biological fluids by reversed-phase liquid chromatography, J. Chromatogr., 275, 133-144 (1983). https://doi.org/10.1016/S0378-4347(00)84352-2
  31. P. J. Elving, J. M. Markowitz, and I. Rosenthal, Preparation of buffer system of constant ionic strength, Anal. Chem., 28, 1179-1180 (1956). https://doi.org/10.1021/ac60115a034
  32. F. Reymond, P.-A. Carrupt, B. Testa, and H. H. Girault, Charge and delocalisation effects on the lipophilicity of protonable drugs, Chem. Eur. J., 5, 39-47 (1999). https://doi.org/10.1002/(SICI)1521-3765(19990104)5:1<39::AID-CHEM39>3.0.CO;2-3
  33. D. Homolka, K. Holub, and V. Marecek, Facilitated ion transfer across the water/nitrobenzene interface theory for single-scan voltammetry applied to a reversible system, J. Electroanal. Chem., 138, 29-36 (1982). https://doi.org/10.1016/0022-0728(82)87125-8
  34. P. Peljo and H. H. Girault, Liquid/liquid interfaces, electrochemistry at. In: R. A. Meyers (ed.), Encyclopedia of Analytical Chemistry, 1-11, John Wiley & Sons (2012).
  35. J. A. Ortuno, C. Serna, A. Molina, and A. Gil, Differential pulse voltammetry and additive differential pulse voltammetry with solvent polymeric membrane ion sensors, Anal. Chem., 78, 8129-8133 (2006). https://doi.org/10.1021/ac061224o
  36. T. J. Stockmann, A.-M. Montgomery, and Z. Ding, Formal transfer potentials of strontium and uranyl ions at water/ 1,2-dichloroethane interfaces, Can. J. Chem., 90, 836-842 (2012). https://doi.org/10.1139/v2012-068
  37. V. Gobry, S. Ulmeanu, F. Reymond, G. Bouchard, P.-A. Carrupt, B. Testa, and H. H. Girault, Generalization of ionic partition diagrams to lipophilic compounds and to biphasic systems with variable phase volume ratios, J. Am. Chem. Soc., 123, 10684-10690 (2001). https://doi.org/10.1021/ja015914f
  38. Y. Shao, M. D. Osborne, and H. H. Girault, Assisted ion transfer at micro-ITIES supported at the tip of micropipettes, J. Electroanal. Chem., 318, 101-109 (1991). https://doi.org/10.1016/0022-0728(91)85297-3
  39. B. Liu and M. V. Mirkin, Electrochemistry at microscopic liquid-liquid interfaces, Electroanalysis, 12, 1433-1446 (2000). https://doi.org/10.1002/1521-4109(200012)12:18<1433::AID-ELAN1433>3.0.CO;2-2
  40. J. Strutwolf, M. D. Scanlon, and D. W. M. Arrigan, The performance of differential pulse stripping voltammetry at micro-liquid-liquid interface arrays, J. Electroanal. Chem., 641, 7-13 (2010). https://doi.org/10.1016/j.jelechem.2010.01.020
  41. V. Marecek and Z. Samec, Electrolysis at the interface between two immiscible electrolyte solutions: Determination of acetylcholine by differential pulse stripping voltammetry, Anal. Lett., 14, 1241-1253 (1981). https://doi.org/10.1080/00032718108081455