References
- Scribd. Inc., http://pt.scribd.com/doc/3323459/Effect-of-Climate-changein-agriculture-and-livestock-production, July 11 (2018).
- Eastern Research Group, Inc., https://www.erg.com/project/digitaltransformation-epas-greenhouse-gas-emissions-report, July 11 (2018).
-
Korea Energy Agency, 2017 Vehicle Fuel Economy and
$CO_2$ Emissions: Data and Analyses, pp. 53-58, Korea (2017). - Toyota Motor Sales, U.S.A. Inc., https://ssl.toyota.com/mirai/fcv.html, July 11 (2018).
- Hydrogen Cars Now, http://www.hydrogencarsnow.com/index.php/kenworth-t680-fuel-cell-heavy-truck/, July 11 (2018).
- Money Today, http://news.mt.co.kr/mtview.php?no=2017091216144652060, September 12 (2017).
- C. H. Park, S. Y. Nam, and Y. T. Hong, Molecular dynamics (MD) study of proton exchange membranes for fuel cells, Membr. J., 26, 329-336 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.329
- D. J. Kim and S. Y. Nam, Research trend of organic/inorganic composite membrane for polymer electrolyte membrane fuel cell, Membr. J., 22, 155-170 (2012).
- T. Zhang, P. Wang, H. Chen, and P. Pei, A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition, Appl. Energy, 223, 249-262 (2018). https://doi.org/10.1016/j.apenergy.2018.04.049
- E. H. Majlan, D. Rohendi, W. R. W. Daud, T. Husaini, and M. A. Haque, Electrode for proton exchange membrane fuel cells: A review, Renew. Sustain. Energy Rev., 89, 117-134 (2018). https://doi.org/10.1016/j.rser.2018.03.007
- C. H. Woo, Current patents and papers research trend of fuel cell membrane, Membr. J., 26, 407-420 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.6.407
- W. G. Jang, S. H. Ye, S. K. Kang, J. T. Kim, and H. S. Byun, Preparation and characterization of ion exchange membrane using sPEEK for fuel cell application, Membr. J., 21, 270-276 (2011).
- D. H. Lee, S. J. Kim, S. Y. Nam, and H. J. Kim, Synthesis and ion conducting properties of anion exchange membranes based on PBI copolymers for alkaline fuel cells, Membr. J., 20, 217-221 (2010).
- S. Gottesfeld, D. R. Dekel, M. Page, C. S. Bae, Y. Yan, P. Zelenay, and Y. S. Kim, Anion exchange membrane fuel cells: Current status and remaining challenges, J. Power Sources, 375, 170-184 (2018). https://doi.org/10.1016/j.jpowsour.2017.08.010
- Z. F. Pan, L. An, T. S. Zhao, and Z. K. Tang, Advances and challenges in alkaline anion exchange membrane fuel cells, Prog. Energy Combust. Sci., 66, 141-175 (2018). https://doi.org/10.1016/j.pecs.2018.01.001
-
G. Gupta, K. Scott, and M. Mamlouk, Soluble polystyrene-bpoly(ethylene/butylene)-b-polystyrene based ionomer for anion exchange membrane fuel cells operating at
$70^{\circ}C$ , Fuel Cells, 2, 137-147 (2018). - Z. Sun, B. Lin, and F. Yan, Anion-exchange membranes for alkaline fuel cell applications: The effects of cations, ChemSusChem, 11, 58-70 (2018). https://doi.org/10.1002/cssc.201701600
- Q. He and E. J. Cairns, Review-recent progress in electrocatalysts for oxygen reduction suitable for alkaline anion exchange membrane fuel cells, J. Electrochem. Soc., 162, F1504-F1539 (2015). https://doi.org/10.1149/2.0551514jes
- Z. Wojnarowska and M. Paluch, Recent progress on dielectric properties of protic ionic liquids, J. Phys. Condens. Matter., 27, 073202-07321 (2015). https://doi.org/10.1088/0953-8984/27/7/073202
- P. Atkins, J. D. Paula, and J. Keeler, Atkins' Physical Chemistry, 702, Oxford University Press, Oxford, UK (2006).
- J. Chen, C. Li, J. Wang, L. Li, and Z. Wei, A general strategy to enhance the alkaline stability of anion exchange membranes, J. Mater. Chem. A, 5, 6318-6327 (2017). https://doi.org/10.1039/C7TA00879A
-
S. Suzuki, H. Muroyama, T. Matsui, and K. Eguchi, Influence of
$CO_2$ dissolution into anion exchange membrane on fuel cell performance, Electrochim. Acta, 88, 552-558 (2013). https://doi.org/10.1016/j.electacta.2012.10.105 - N. Ziv, W. E. Mustain, and D. R. Dekel, The effect of ambient carbon dioxide on anion exchange membrane fuel cells, ChemSusChem, 11, 1136-1150 (2018). https://doi.org/10.1002/cssc.201702330
- E. Agel, J. Bouet, and J. F. Fauvarque, Characterization and use of anionic membranes for alkaline fuel cells, J. Power Sources, 101, 267-274 (2001). https://doi.org/10.1016/S0378-7753(01)00759-5
- J. R. Varcoe and R. C. T. Slade, Prospects for alkaline anion exchange membranes in low temperature fuel cells, Fuel Cells, 5, 187-200 (2005). https://doi.org/10.1002/fuce.200400045
- B. C. Bae, E. Y. Kim, S. J. Lee, and H. J. Lee, Research trends of anion exchange membranes within alkaline fuel cells, New Renew. Energy, 11, 52-61 (2015). https://doi.org/10.7849/ksnre.2015.12.11.4.52
- H. H. Lee, Development trend of anion exchange membrane for alkaline fuel cell, KOSEN Expert Review, 1, 1 (2012).
- H. J. Lee, J. H. Choi, B. J. Chang, and J. H. Kim, Research and development trends of ion exchange membranes processes, Korean Ind. Chem. (KIC) News, 14, 21-28 (2011).
- S. D. Poynton and J. R. Varcoe, Reduction of the monomer quantities required for the preparation of radiation-grafted alkaline anion-exchange membranes, Solid State Ion., 277, 38-43 (2015). https://doi.org/10.1016/j.ssi.2015.04.013
- W. H. Lee, E. J. Park, J. Y. Han, D. W. Shin, Y. S. Kim, and C. S. Bae, Poly(terphenylene) anion exchange membranes: The effect of backbone structure on morphology and membrane property, ACS Macro Lett., 6, 566-570 (2017). https://doi.org/10.1021/acsmacrolett.7b00148
- H. Yanagi and K. Fukuta, Anion exchange membrane and ionomer for alkaline membrane fuel cells (AMFCs), ECS Trans., 16, 257-262 (2008).
- B. Bauer, H. Strathmann, and F. Effenberger, Anion-exchange membranes with improved alkaline stability, Desalination, 79, 125-144 (1990). https://doi.org/10.1016/0011-9164(90)85002-R
- Y. Yan, B. Xu, J. Wang, and Y. Zhao, Poly(aryl piperidinium) polymers for use as hydroxide exchange membranes and ionomers, WO2017172824A1, March 28 (2016).
- T. P. Pandey, H. N. Sarode, Y. Yang, Y. Yang, K. Vezzu, V. D. Noto, S. Seifert, D. M. Knauss, M. W. Liberatore, and A. M. Herring, A highly hydroxide comductive, chemically stable anion exchange membrane, poly(2,6 dimethyl 1,4 phenylene oxide)-b-poly(vinyl benzyl trimethyl ammonium), for electrochemical applications, J. Electrochem. Soc., 163, H513-H520 (2016). https://doi.org/10.1149/2.0421607jes
- S. H. Kwon, A. H. N. Rao, and T. H. Kim, Anion exchange membranes based on terminally crosslinked methyl morpholiniumfunctionalized poly(arylene ether sulfones)s, J. Power Sources, 375, 421-432 (2018). https://doi.org/10.1016/j.jpowsour.2017.06.047
- D. J. Kim, B. N. Lee, and S. Y. Nam, Synthesis and characterization of PEEK containing imidazole for anion exchange membrane fuel cell, Int. J. Hydrogen Energy, 42, 23759-23767 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.199
- D. R. Dekel, Review of cell performance in anion exchange membrane fuel cells, J. Power Sources, 375, 158-169 (2018). https://doi.org/10.1016/j.jpowsour.2017.07.117
- S. Yun, X. Ma, H. Liu, and J. Hao, Highly stable double crosslinked membrane based on poly(vinylbenzyl chloride) for anion exchange membrane fuel cell, Polym. Bull., 75, 5163-5177 (2018). https://doi.org/10.1007/s00289-018-2312-3
- B. S. Ko, J. Y. Sohn, Y. C. Nho, and J. H. Shin, A study on the radiolytic synthesis of PVBC-grafted ETFE films and their quaternarization with diamines for the preparation of anion exchange membranes, J. Radiat. Ind., 5, 179-184 (2011).
- J. H. Shin, J. Y. Sohn, Y. C. Nho, T. J. Kang, D. S. Kim, D. S. Im, B. H. Lee, and J. H. Kim, Current R&D status of fuel cell membranes by radiation in Korea, J. Radiat. Ind., 6, 289-297 (2012).
- B. S. Lee, S. K. Jung, and J. W. Rhim, Preparation and characterization of the impregnation to porous membranes with PVA/PSSA-MA for fuel cell applications, Polymer(Korea), 35, 296-301 (2011).
- H. Zhang, B. Shi, R. Ding, H. Chen, J. Wang, and J. Liu, Composite anion exchange membrane from quaternized polymer spheres with tunable and enhanced hydroxide conduction property, Int. Eng. Chem. Res., 55, 9064-9076 (2016). https://doi.org/10.1021/acs.iecr.6b01741
- M. Watanabe, Y. Satoh, and C. Shimura, Management of the water content in polymer electrolyte membranes with porous fiber wicks, J. Electrochem. Soc., 140, 3190-3193 (1993) https://doi.org/10.1149/1.2221008
- K. H. Choi, D. J. Park, Y. W. Rho, Y. T. Kho, and T. H. Lee, Comparison and characteristics of the membranes for internal humidification of PEMFC, Proc. 16th KSIEC Meeting, October 24-25, Daejeon, Korea (1997).
- R. Yadav and P. S. Fedkiw, Analysis of EIS technique and Nafion 117 conductivity as a function of temperature and relative humidity, J. Electrochem. Soc., 159, B340-B346 (2012). https://doi.org/10.1149/2.104203jes
- Y. Kim, K. Ketpang, S. Jaritphun, J. S. Park, and S. Shanmugam, A polyoxometalate coupled graphene oxide-Nafion composite membrane for fuel cells operating at low relative humidity, J. Mater. Chem. A, 3, 8148-8155 (2015). https://doi.org/10.1039/C5TA00182J
- M. S. Shin, D. H. Kim, M. S. Kang, and J. S. Park, Development of ionomer binder solutions using polymer grinding for solid alkaline fuel cells, J. Korean Electrochem. Soc., 19, 107-113 (2016). https://doi.org/10.5229/JKES.2016.19.3.107
- L. Wang, E. Magliocca, E. L. Cunningham, W. E. Mustain, S. D. Poynton, R. Escudero-Cid, M. M. Nasef, J. Ponce-Gonzalez, R. Bance-Souahli, R. C. T. Slade, D. K. Whelligan, and J. R. Varcoe, An optimized synthesis of high performance radiation-grafted anion exchange membranes, Green Chem., 19, 831-843 (2017). https://doi.org/10.1039/C6GC02526A
- X. Gao, H. Yu, J. Jia, J. Hao, F. Xie, J. Chi, B. Qin, L. Fu, W. Song, and Z. Shao, High performance anion exchange ionomer for anion exchange membrane fuel cells, RSC Adv., 7, 19153-19161 (2017). https://doi.org/10.1039/C7RA01980G
- X. D. Liu, H. R. Gao, X. H. Chen, Y. Hu, S. P. Pei, H. Li, and Y. M. Zhang, Synthesis of perfluorinated ionomers and their anion exchange membranes, J. Membr. Sci., 515, 268-276 (2016). https://doi.org/10.1016/j.memsci.2016.05.062
- M. S. Shin, Y. J. Byun, Y. W. Choi, M. S. Kang, and J. S. Park, On-site crosslinked quaternized poly(vinyl alcohol) as ionomer binder for solid alkaline fuel cells, Int. J. Hydrogen Energy, 39, 16556-16561 (2014). https://doi.org/10.1016/j.ijhydene.2014.03.181
- Y. Zhao, H. Yu, D. Yang, J. Li, Z. Shao, and B. Yi, High-performance alkaline fuel cells using crosslinked composite anion exchange membrane, J. Power Source, 221, 247-251 (2013). https://doi.org/10.1016/j.jpowsour.2012.08.053
- Y. Luo, J. Guo, C. Wang, and D. Chu, Fuel cell durability enhancement by crosslinking alkaline anion exchange membrane electrolyte, Electrochem. Commun., 16, 65-68 (2012). https://doi.org/10.1016/j.elecom.2012.01.005
- J. Pan, S. Lu, Y. Li, A. Huang, L. Zhuang, and J. Lu, High-performance alkaline polymer electrolyte for fuel cell applications, Adv. Funct. Mater., 20, 312-319 (2010). https://doi.org/10.1002/adfm.200901314
- S. Gu, R. Cai, T. Luo, Z. Chen, M. Sun, Y. Liu, G. He, and Y. Yan, A soluble and highly conductive ionomer for high performance hydroxide exchange membrane fuel cells, Angew. Chem., 121, 6621-6624 (2009). https://doi.org/10.1002/ange.200806299