DOI QR코드

DOI QR Code

Problems and Solutions of Anion Exchange Membranes for Anion Exchange Membrane Fuel Cell (AEMFC)

음이온교환막연료전지용 음이온교환막의 문제점과 해결방안

  • Son, Tae Yang (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Kim, Tae Hyun (Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University) ;
  • Kim, Hyoung Juhn (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 손태양 (경상대학교 나노신소재융합공학과 공학연구원) ;
  • 김태현 (인천대학교 화학과) ;
  • 김형준 (한국과학기술연구원 연료전지센터) ;
  • 남상용 (경상대학교 나노신소재융합공학과 공학연구원)
  • Received : 2018.07.24
  • Accepted : 2018.08.26
  • Published : 2018.10.10

Abstract

Fuel cells are seen as eco-friendly energy resources that convert chemical energy into electrical energy. However, proton exchange membrane fuel cells (PEMFCs) have problems such as the use of expensive platinum catalysts for the reduction of conductivity under high temperature humidification conditions. Thus, an anion exchange membrane fuel cell (AEMFC) is attracting a great attention. Anion exchange fuel cells use non - Pt catalysts and have the advantage of better efficiency because of the lower activation energy of the oxygen reduction reaction. However, there are various problems to be solved including problems such as the electrode damage and reduction of ion conductivity by being exposed to the carbon dioxide. Therefore, this mini review proposes various solutions for different problems of anion exchange fuel cells through a wide range of research papers.

화학에너지를 전기에너지로 전환하는 친환경 에너지 자원으로 각광받는 연료전지에서 고분자 전해질 연료전지(proton exchange membrane fuel cell, PEMFC)의 비싼 백금촉매 사용, 고온가습조건에서의 전도도 감소 등의 문제로 음이온교환연료전지(anion exchange membrane fuel cell, AEMFC)가 주목을 받고 있다. 음이온교환연료전지는 비백금계 촉매를 사용하고 산소환원반응의 활성화 에너지가 낮아 효율이 더 우수한 장점이 있다. 하지만, 이산화탄소에 노출되어 전극손상, 이온전도도 감소 등의 문제점을 포함하여 여러 가지 해결해야 할 문제점이 있다. 따라서, 본 미니총설은 음이온 교환연료전지의 다양한 문제점을 여러 연구논문을 통해서 해결방안을 제시하고자 한다.

Keywords

References

  1. Scribd. Inc., http://pt.scribd.com/doc/3323459/Effect-of-Climate-changein-agriculture-and-livestock-production, July 11 (2018).
  2. Eastern Research Group, Inc., https://www.erg.com/project/digitaltransformation-epas-greenhouse-gas-emissions-report, July 11 (2018).
  3. Korea Energy Agency, 2017 Vehicle Fuel Economy and $CO_2$ Emissions: Data and Analyses, pp. 53-58, Korea (2017).
  4. Toyota Motor Sales, U.S.A. Inc., https://ssl.toyota.com/mirai/fcv.html, July 11 (2018).
  5. Hydrogen Cars Now, http://www.hydrogencarsnow.com/index.php/kenworth-t680-fuel-cell-heavy-truck/, July 11 (2018).
  6. Money Today, http://news.mt.co.kr/mtview.php?no=2017091216144652060, September 12 (2017).
  7. C. H. Park, S. Y. Nam, and Y. T. Hong, Molecular dynamics (MD) study of proton exchange membranes for fuel cells, Membr. J., 26, 329-336 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.329
  8. D. J. Kim and S. Y. Nam, Research trend of organic/inorganic composite membrane for polymer electrolyte membrane fuel cell, Membr. J., 22, 155-170 (2012).
  9. T. Zhang, P. Wang, H. Chen, and P. Pei, A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition, Appl. Energy, 223, 249-262 (2018). https://doi.org/10.1016/j.apenergy.2018.04.049
  10. E. H. Majlan, D. Rohendi, W. R. W. Daud, T. Husaini, and M. A. Haque, Electrode for proton exchange membrane fuel cells: A review, Renew. Sustain. Energy Rev., 89, 117-134 (2018). https://doi.org/10.1016/j.rser.2018.03.007
  11. C. H. Woo, Current patents and papers research trend of fuel cell membrane, Membr. J., 26, 407-420 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.6.407
  12. W. G. Jang, S. H. Ye, S. K. Kang, J. T. Kim, and H. S. Byun, Preparation and characterization of ion exchange membrane using sPEEK for fuel cell application, Membr. J., 21, 270-276 (2011).
  13. D. H. Lee, S. J. Kim, S. Y. Nam, and H. J. Kim, Synthesis and ion conducting properties of anion exchange membranes based on PBI copolymers for alkaline fuel cells, Membr. J., 20, 217-221 (2010).
  14. S. Gottesfeld, D. R. Dekel, M. Page, C. S. Bae, Y. Yan, P. Zelenay, and Y. S. Kim, Anion exchange membrane fuel cells: Current status and remaining challenges, J. Power Sources, 375, 170-184 (2018). https://doi.org/10.1016/j.jpowsour.2017.08.010
  15. Z. F. Pan, L. An, T. S. Zhao, and Z. K. Tang, Advances and challenges in alkaline anion exchange membrane fuel cells, Prog. Energy Combust. Sci., 66, 141-175 (2018). https://doi.org/10.1016/j.pecs.2018.01.001
  16. G. Gupta, K. Scott, and M. Mamlouk, Soluble polystyrene-bpoly(ethylene/butylene)-b-polystyrene based ionomer for anion exchange membrane fuel cells operating at $70^{\circ}C$, Fuel Cells, 2, 137-147 (2018).
  17. Z. Sun, B. Lin, and F. Yan, Anion-exchange membranes for alkaline fuel cell applications: The effects of cations, ChemSusChem, 11, 58-70 (2018). https://doi.org/10.1002/cssc.201701600
  18. Q. He and E. J. Cairns, Review-recent progress in electrocatalysts for oxygen reduction suitable for alkaline anion exchange membrane fuel cells, J. Electrochem. Soc., 162, F1504-F1539 (2015). https://doi.org/10.1149/2.0551514jes
  19. Z. Wojnarowska and M. Paluch, Recent progress on dielectric properties of protic ionic liquids, J. Phys. Condens. Matter., 27, 073202-07321 (2015). https://doi.org/10.1088/0953-8984/27/7/073202
  20. P. Atkins, J. D. Paula, and J. Keeler, Atkins' Physical Chemistry, 702, Oxford University Press, Oxford, UK (2006).
  21. J. Chen, C. Li, J. Wang, L. Li, and Z. Wei, A general strategy to enhance the alkaline stability of anion exchange membranes, J. Mater. Chem. A, 5, 6318-6327 (2017). https://doi.org/10.1039/C7TA00879A
  22. S. Suzuki, H. Muroyama, T. Matsui, and K. Eguchi, Influence of $CO_2$ dissolution into anion exchange membrane on fuel cell performance, Electrochim. Acta, 88, 552-558 (2013). https://doi.org/10.1016/j.electacta.2012.10.105
  23. N. Ziv, W. E. Mustain, and D. R. Dekel, The effect of ambient carbon dioxide on anion exchange membrane fuel cells, ChemSusChem, 11, 1136-1150 (2018). https://doi.org/10.1002/cssc.201702330
  24. E. Agel, J. Bouet, and J. F. Fauvarque, Characterization and use of anionic membranes for alkaline fuel cells, J. Power Sources, 101, 267-274 (2001). https://doi.org/10.1016/S0378-7753(01)00759-5
  25. J. R. Varcoe and R. C. T. Slade, Prospects for alkaline anion exchange membranes in low temperature fuel cells, Fuel Cells, 5, 187-200 (2005). https://doi.org/10.1002/fuce.200400045
  26. B. C. Bae, E. Y. Kim, S. J. Lee, and H. J. Lee, Research trends of anion exchange membranes within alkaline fuel cells, New Renew. Energy, 11, 52-61 (2015). https://doi.org/10.7849/ksnre.2015.12.11.4.52
  27. H. H. Lee, Development trend of anion exchange membrane for alkaline fuel cell, KOSEN Expert Review, 1, 1 (2012).
  28. H. J. Lee, J. H. Choi, B. J. Chang, and J. H. Kim, Research and development trends of ion exchange membranes processes, Korean Ind. Chem. (KIC) News, 14, 21-28 (2011).
  29. S. D. Poynton and J. R. Varcoe, Reduction of the monomer quantities required for the preparation of radiation-grafted alkaline anion-exchange membranes, Solid State Ion., 277, 38-43 (2015). https://doi.org/10.1016/j.ssi.2015.04.013
  30. W. H. Lee, E. J. Park, J. Y. Han, D. W. Shin, Y. S. Kim, and C. S. Bae, Poly(terphenylene) anion exchange membranes: The effect of backbone structure on morphology and membrane property, ACS Macro Lett., 6, 566-570 (2017). https://doi.org/10.1021/acsmacrolett.7b00148
  31. H. Yanagi and K. Fukuta, Anion exchange membrane and ionomer for alkaline membrane fuel cells (AMFCs), ECS Trans., 16, 257-262 (2008).
  32. B. Bauer, H. Strathmann, and F. Effenberger, Anion-exchange membranes with improved alkaline stability, Desalination, 79, 125-144 (1990). https://doi.org/10.1016/0011-9164(90)85002-R
  33. Y. Yan, B. Xu, J. Wang, and Y. Zhao, Poly(aryl piperidinium) polymers for use as hydroxide exchange membranes and ionomers, WO2017172824A1, March 28 (2016).
  34. T. P. Pandey, H. N. Sarode, Y. Yang, Y. Yang, K. Vezzu, V. D. Noto, S. Seifert, D. M. Knauss, M. W. Liberatore, and A. M. Herring, A highly hydroxide comductive, chemically stable anion exchange membrane, poly(2,6 dimethyl 1,4 phenylene oxide)-b-poly(vinyl benzyl trimethyl ammonium), for electrochemical applications, J. Electrochem. Soc., 163, H513-H520 (2016). https://doi.org/10.1149/2.0421607jes
  35. S. H. Kwon, A. H. N. Rao, and T. H. Kim, Anion exchange membranes based on terminally crosslinked methyl morpholiniumfunctionalized poly(arylene ether sulfones)s, J. Power Sources, 375, 421-432 (2018). https://doi.org/10.1016/j.jpowsour.2017.06.047
  36. D. J. Kim, B. N. Lee, and S. Y. Nam, Synthesis and characterization of PEEK containing imidazole for anion exchange membrane fuel cell, Int. J. Hydrogen Energy, 42, 23759-23767 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.199
  37. D. R. Dekel, Review of cell performance in anion exchange membrane fuel cells, J. Power Sources, 375, 158-169 (2018). https://doi.org/10.1016/j.jpowsour.2017.07.117
  38. S. Yun, X. Ma, H. Liu, and J. Hao, Highly stable double crosslinked membrane based on poly(vinylbenzyl chloride) for anion exchange membrane fuel cell, Polym. Bull., 75, 5163-5177 (2018). https://doi.org/10.1007/s00289-018-2312-3
  39. B. S. Ko, J. Y. Sohn, Y. C. Nho, and J. H. Shin, A study on the radiolytic synthesis of PVBC-grafted ETFE films and their quaternarization with diamines for the preparation of anion exchange membranes, J. Radiat. Ind., 5, 179-184 (2011).
  40. J. H. Shin, J. Y. Sohn, Y. C. Nho, T. J. Kang, D. S. Kim, D. S. Im, B. H. Lee, and J. H. Kim, Current R&D status of fuel cell membranes by radiation in Korea, J. Radiat. Ind., 6, 289-297 (2012).
  41. B. S. Lee, S. K. Jung, and J. W. Rhim, Preparation and characterization of the impregnation to porous membranes with PVA/PSSA-MA for fuel cell applications, Polymer(Korea), 35, 296-301 (2011).
  42. H. Zhang, B. Shi, R. Ding, H. Chen, J. Wang, and J. Liu, Composite anion exchange membrane from quaternized polymer spheres with tunable and enhanced hydroxide conduction property, Int. Eng. Chem. Res., 55, 9064-9076 (2016). https://doi.org/10.1021/acs.iecr.6b01741
  43. M. Watanabe, Y. Satoh, and C. Shimura, Management of the water content in polymer electrolyte membranes with porous fiber wicks, J. Electrochem. Soc., 140, 3190-3193 (1993) https://doi.org/10.1149/1.2221008
  44. K. H. Choi, D. J. Park, Y. W. Rho, Y. T. Kho, and T. H. Lee, Comparison and characteristics of the membranes for internal humidification of PEMFC, Proc. 16th KSIEC Meeting, October 24-25, Daejeon, Korea (1997).
  45. R. Yadav and P. S. Fedkiw, Analysis of EIS technique and Nafion 117 conductivity as a function of temperature and relative humidity, J. Electrochem. Soc., 159, B340-B346 (2012). https://doi.org/10.1149/2.104203jes
  46. Y. Kim, K. Ketpang, S. Jaritphun, J. S. Park, and S. Shanmugam, A polyoxometalate coupled graphene oxide-Nafion composite membrane for fuel cells operating at low relative humidity, J. Mater. Chem. A, 3, 8148-8155 (2015). https://doi.org/10.1039/C5TA00182J
  47. M. S. Shin, D. H. Kim, M. S. Kang, and J. S. Park, Development of ionomer binder solutions using polymer grinding for solid alkaline fuel cells, J. Korean Electrochem. Soc., 19, 107-113 (2016). https://doi.org/10.5229/JKES.2016.19.3.107
  48. L. Wang, E. Magliocca, E. L. Cunningham, W. E. Mustain, S. D. Poynton, R. Escudero-Cid, M. M. Nasef, J. Ponce-Gonzalez, R. Bance-Souahli, R. C. T. Slade, D. K. Whelligan, and J. R. Varcoe, An optimized synthesis of high performance radiation-grafted anion exchange membranes, Green Chem., 19, 831-843 (2017). https://doi.org/10.1039/C6GC02526A
  49. X. Gao, H. Yu, J. Jia, J. Hao, F. Xie, J. Chi, B. Qin, L. Fu, W. Song, and Z. Shao, High performance anion exchange ionomer for anion exchange membrane fuel cells, RSC Adv., 7, 19153-19161 (2017). https://doi.org/10.1039/C7RA01980G
  50. X. D. Liu, H. R. Gao, X. H. Chen, Y. Hu, S. P. Pei, H. Li, and Y. M. Zhang, Synthesis of perfluorinated ionomers and their anion exchange membranes, J. Membr. Sci., 515, 268-276 (2016). https://doi.org/10.1016/j.memsci.2016.05.062
  51. M. S. Shin, Y. J. Byun, Y. W. Choi, M. S. Kang, and J. S. Park, On-site crosslinked quaternized poly(vinyl alcohol) as ionomer binder for solid alkaline fuel cells, Int. J. Hydrogen Energy, 39, 16556-16561 (2014). https://doi.org/10.1016/j.ijhydene.2014.03.181
  52. Y. Zhao, H. Yu, D. Yang, J. Li, Z. Shao, and B. Yi, High-performance alkaline fuel cells using crosslinked composite anion exchange membrane, J. Power Source, 221, 247-251 (2013). https://doi.org/10.1016/j.jpowsour.2012.08.053
  53. Y. Luo, J. Guo, C. Wang, and D. Chu, Fuel cell durability enhancement by crosslinking alkaline anion exchange membrane electrolyte, Electrochem. Commun., 16, 65-68 (2012). https://doi.org/10.1016/j.elecom.2012.01.005
  54. J. Pan, S. Lu, Y. Li, A. Huang, L. Zhuang, and J. Lu, High-performance alkaline polymer electrolyte for fuel cell applications, Adv. Funct. Mater., 20, 312-319 (2010). https://doi.org/10.1002/adfm.200901314
  55. S. Gu, R. Cai, T. Luo, Z. Chen, M. Sun, Y. Liu, G. He, and Y. Yan, A soluble and highly conductive ionomer for high performance hydroxide exchange membrane fuel cells, Angew. Chem., 121, 6621-6624 (2009). https://doi.org/10.1002/ange.200806299