DOI QR코드

DOI QR Code

TiO2 nanotube plate의 질산성질소 전기분해 효율 평가

The Evaluation of Electrolytic Nitrate Removal Efficiency of TiO2 Nanotube Plate

  • 김다은 (서울과학기술대학교 에너지환경대학원 에너지환경공학과) ;
  • 이용호 (서울과학기술대학교 에너지환경대학원 에너지환경공학과) ;
  • 최효연 (서울과학기술대학교 에너지환경대학원 에너지환경공학과) ;
  • 한희주 (서울과학기술대학교 에너지환경대학원 에너지환경공학과) ;
  • 박대원 (서울과학기술대학교 에너지환경대학원 에너지환경공학과)
  • Kim, Da Eun (Graduate School of Energy and Environment, Seoul National University of Science & Technology) ;
  • Lee, Yongho (Graduate School of Energy and Environment, Seoul National University of Science & Technology) ;
  • Han, Heeju (Graduate School of Energy and Environment, Seoul National University of Science & Technology) ;
  • Choi, Hyo yeon (Graduate School of Energy and Environment, Seoul National University of Science & Technology) ;
  • Pak, Daewon (Graduate School of Energy and Environment, Seoul National University of Science & Technology)
  • 투고 : 2018.06.20
  • 심사 : 2018.09.18
  • 발행 : 2018.09.30

초록

본 연구에서는 전기분해 방법을 이용한 질산성질소($NO_3{^-}-N$) 분해가 $TiO_2$ nanotube plate 및 구리, 니켈, 스테인리스 스틸, 알루미늄, 주석, 티타늄을 환원전극으로 사용하였을 때 가능한지를 평가하였다. 전극의 전기화학적 특성 평가는 임피던스 측정을 하여 비교하였고, $TiO_2$ nanotube plate의 표면 분석은 주사전자현미경을 통해 SEM 및 BET 분석법을 이용한 비표면적 분석을 통해 비교하였다. 질산성질소 전해실험의 경우 90분의 실험을 진행하였으며, 실험 결과 전극 표면의 부식이 수반되지 않은 $TiO_2$ nanotube plate가 기타 금속 전극에 비해 질산성질소 환원 반응속도가 가장 뛰어난 것으로 확인되었다.

In this study, $TiO_2$ nanotube plate and metal electrodes(Copper, Nickel, Stainless Steel, Aluminum, Tin, Titanium) were compared on cathodic reduction of nitrate ($NO_3{^-}-N$) during electrolysis. The electrochemical characteristics were compared based on electrochemical impedance spectroscopy (EIS). The surface morphology was obtained using scanning electron microscopy (SEM) method. Brunauer-Emmett-Teller (BET) method was implemented for the specific surface area analysis of the cathodes. To study kinetics, 90 minute batch electrolysis of nitrate solution was performed for each cathodes. In conclusion, under the condition of relatively low ($0.04 A\;cm^{-2}$) current density, $TiO_2$ nanotube plate showed no surface corrosion during the electrolysis, and the reaction rate was measured the highest in the kinetic analysis.

키워드

참고문헌

  1. S. Garcia-Segura, M. Lanzarini-Lopes, K. Hristovski, P. Westerhoff, "Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications", Applied Catalysis B: Environmental, Vol.236, pp. 546-568, (2018). https://doi.org/10.1016/j.apcatb.2018.05.041
  2. J. Martinez, A. Ortiz, I. Ortiz, "State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates", Applied Catalysis B: Environmental, Vol.207, pp. 42-59. (2017). https://doi.org/10.1016/j.apcatb.2017.02.016
  3. M. Li, C. Feng, Z. Zhang, N. Sugiura, "Efficient electrochemical reduction of nitrate to nitrogen using Ti/$IrO_2$-Pt anode and different cathodes", Electrochimica Acta, Vol.54, No.20, pp. 4600-4606, (2009). https://doi.org/10.1016/j.electacta.2009.03.064
  4. I. Katsounaros, D. Ipsakis, C. Polatides, G. Kyriacou, "Efficient electrochemical reduction of nitrate to nitrogen on tin cathode at very high cathodic potentials", Electrochimica Acta, Vol.52, No.3, pp. 1329-1338, (2006). https://doi.org/10.1016/j.electacta.2006.07.034
  5. O. S. G. P. Soares, M. F. R. Pereira, J. J. M. Orfao, J. L. Faria, C. G. Silva, "Photocatalytic nitrate reduction over Pd-Cu/$TiO_2$", Chemical Engineering Journal, Vol.251, pp. 123-130, (2014). https://doi.org/10.1016/j.cej.2014.04.030
  6. Z. Macova, K. Bouzek, J. Serak, "Electrocatalytic activity of copper alloys for NO 3- reduction in a weakly alkaline solution", Journal of applied electrochemistry, Vol.37, No.5, pp. 557-566, (2007). https://doi.org/10.1007/s10800-006-9287-8
  7. H. Cheng, K. Scott, P. A. Christensen, "Application of a solid polymer electrolyte reactor to remove nitrate ions from wastewater", Journal of applied electrochemistry, Vol.35, No.6, pp. 551-560, (2005). https://doi.org/10.1007/s10800-005-1519-9
  8. H. O. N. Tugaoen, S. Garcia-Segura, K. Hristovski, P. Westerhoff, "Compact light-emitting diode optical fiber immobilized $TiO_2$ reactor for photocatalytic water treatment", Science of the Total Environment, Vol.613, pp.1331-1338, (2018).
  9. F. Fabregat-Santiago, E. M. Barea, J. Bisquert, G. K. Mor, K. Shankar, C. A. Grimes, "High Carrier Density and Capacitance in $TiO_2$ Nanotube Arrays Induced by Electrochemical Doping", Journal of the American Chemical Society, Vol.130, No.34, pp. 11312-11316, (2008). https://doi.org/10.1021/ja710899q
  10. D. Regonini, C. Bowen, A. Jaroenworaluck, R. Stevens, "A review of growth mechanism, structure and crystallinity of anodized $TiO_2$ nanotubes", Materials Science and Engineering: R: Reports, Vol.74, No.12, pp. 377-406, (2013). https://doi.org/10.1016/j.mser.2013.10.001
  11. D. Kim, Y. Lee, D. Kim, D. Pak, "The Influence of Current Flow on OH Radical Generation in a photocatalytic Reactor of $TiO_2$ Nanotube Plates, Journal of Korean Oil Chemists' Society, Vol.34, No.2, pp. 349-356, (2017).
  12. S. Brunauer, P. H. Emmett, E. Teller, "Adsorption of Gases in Multimolecular Layers", Journal of the American Chemical Society, Vol.60, No.2, pp. 309-319, (1938). https://doi.org/10.1021/ja01269a023
  13. H. Zhou, Y. Zhang, "Electrochemically Self-Doped $TiO_2$ Nanotube Arrays for Supercapacitors", The Journal of Physical Chemistry C, Vol.118, No.11, pp. 5626-5636, (2014). https://doi.org/10.1021/jp4082883
  14. K. Lee, H. Ku, D. Pak, "OH radical generation in a photocatalytic reactor using $TiO_2$ nanotube plates", Chemosphere, Vol.149, pp. 114-120, (2016). https://doi.org/10.1016/j.chemosphere.2016.01.103
  15. T. Le Luu, J. Kim, J. Yoon, "Physicochemical properties of $RuO_2$ and $IrO_2$ electrodes affecting chlorine evolutions", Journal of Industrial and Engineering Chemistry, Vol.21, pp. 400-404, (2015). https://doi.org/10.1016/j.jiec.2014.02.052