References
- Stratford M. Yeast flocculation: a new perspective. Adv Microb Physiol. 1992;33:2-71.
- Straver MH, Kijne JW, Smit G. Cause and control of flocculation in yeast. Trends Biotechnol. 1993;11:228-232. https://doi.org/10.1016/0167-7799(93)90133-T
- Hope EA, Amorosi CJ, Miller AW, et al. Experimental evolution reveals favored adaptive routes to cell aggregation in yeast. Genetics. 2017;206:1153-1167. https://doi.org/10.1534/genetics.116.198895
- Miki BL, Poon NH, James AP, et al. Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae. J Bacteriol. 1982;150:878-889.
- Shankar CS, Umesh-Kumar S. A surface lectin associated with flocculation in brewing strains of Saccharomyces cerevisiae. Microbiology. 1994;140:1097-1101. https://doi.org/10.1099/13500872-140-5-1097
- Yamashita I, Fukui S. Mating signals control expression of both starch fermentation genes and a novel flocculation gene FLOSin the yeast Saccharomyces. Agric Biol Chem. 1983;47:2889-2896.
- Stratford M, Assinder S. Yeast flocculation: Flo1 and NewFlo phenotypes and receptor structure. Yeast. 1991;7:559-574. https://doi.org/10.1002/yea.320070604
- Teunissen AW, Steensma HY. Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast. 1995;11:1001-1013. https://doi.org/10.1002/yea.320111102
- Lo WS, Dranginis AM. FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J Bacteriol. 1996;178:7144-7151. https://doi.org/10.1128/jb.178.24.7144-7151.1996
- Sieiro C, Reboredo NM, Blanco P, et al. Cloning of a new FLO gene from the flocculating Saccharomyces cerevisiae IM1-8b strain. FEMS Microbiol Lett. 1997;146:109-115. https://doi.org/10.1111/j.1574-6968.1997.tb10179.x
- Bossier P, Goethals P, Rodrigues-Pousada C. Constitutive flocculation in Saccharomyces cerevisiae through overexpression of the GTS1 gene, coding for a 'Glo'-type Zn-finger-containing protein. Yeast. 1997;13:717-725. https://doi.org/10.1002/(SICI)1097-0061(19970630)13:8<717::AID-YEA132>3.0.CO;2-2
- Di Gianvito P, Tesniere C, Suzzi G, et al. FLO5 gene controls flocculation phenotype and adhesive properties in a Saccharomyces cerevisiae sparkling wine strain. Sci Rep. 2017;7:10786. https://doi.org/10.1038/s41598-017-09990-9
- Watson P, Davey J. Characterization of the Prk1 protein kinase from Schizosaccharomyces pombe. Yeast. 1998;14:485-492. https://doi.org/10.1002/(SICI)1097-0061(19980330)14:5<485::AID-YEA239>3.0.CO;2-V
- Kim KH, Cho YM, Kang WH, et al. Negative regulation of filamentous growth and flocculation by Lkh1, a fission yeast LAMMER kinase homolog. Biochem Biophys Res Commun. 2001;289:1237-1242. https://doi.org/10.1006/bbrc.2001.6128
- Kang WH, Park YH, Park HM. The LAMMER kinase homolog, Lkh1, regulates Tup transcriptional repressors through phosphorylation in Schizosaccharomyces pombe. J Biol Chem. 2010;285:13797-13806. https://doi.org/10.1074/jbc.M110.113555
- Liu Z, Li R, Dong Q, et al. Characterization of the non-sexual flocculation of fission yeast cells that results from the deletion of ribosomal protein L32. Yeast. 2015;32:439-449. https://doi.org/10.1002/yea.3070
- Li R, Li X, Sun L, et al. Reduction of ribosome level triggers flocculation of fission yeast cells. Eukaryotic Cell . 2013;12:450-459. https://doi.org/10.1128/EC.00321-12
- Matsuzawa T, Morita T, Tanaka N, et al. Identification of a galactose-specific flocculin essential for non-sexual flocculation and filamentous growth in Schizosaccharomyces pombe. Mol Microbiol. 2011;82:1531-1544. https://doi.org/10.1111/j.1365-2958.2011.07908.x
- Moreno S, Klar A, Nurse P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 1991;194:795-823.
- Alfa C, Fantes P, Hyams J, et al. Cold Spring Harbor Laboratory. Experiments with fission yeast: a laboratory course manual. New York: Cold Spring Harbor Laboratory Press; 1993.
- Hengen PN. Methods and reagents. preparing ultra-competent Escherichia coli. Trends Biochem Sci. 1996;21:75-76.
- Maundrell K. Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene. 1993;123:127-130. https://doi.org/10.1016/0378-1119(93)90551-D
- Grimm C, Kohli J, Murray J, et al. Genetic engineering of Schizosaccharomyces pombe: a system for gene disruption and replacement using the ura4 gene as a selectable marker. Mol Gen Genet. 1988;215:81-86. https://doi.org/10.1007/BF00331307
- Okazaki K, Okazaki N, Kume K, et al. High-frequency transformation method and library transducing vectors for cloning mammalian cDNAs by trans-complementation of Schizosaccharomyces pombe. Nucleic Acids Res. 1990;18:6485-6489. https://doi.org/10.1093/nar/18.22.6485
- Bellal M, Boudrant J, Elfoul L, et al. Flocculation dispersion in Kluyveromyces lactis. Process Biochem. 1995;30:641-648. https://doi.org/10.1016/0032-9592(94)00046-8
- Su Y, Chen J, Huang Y. Disruption of ppr3, ppr4, ppr6, or ppr10 induces flocculation and filamentous growth in Schizosaccharomyces pombe. FEMS Microbiol Lett. 2018;365:16.
- Tanaka N, Awai A, Bhuiyan MS, et al. Cell surface galactosylation is essential for nonsexual flocculation in Schizosaccharomyces pombe. J Bacteriol. 1999;181:1356-1359.
Cited by
- The Dual-Specificity LAMMER Kinase Affects Stress-Response and Morphological Plasticity in Fungi vol.9, pp.None, 2019, https://doi.org/10.3389/fcimb.2019.00213
- A Mini Review: The History of Yeast Flocculation with an Emphasis on Measurement Techniques vol.79, pp.4, 2021, https://doi.org/10.1080/03610470.2020.1806006