DOI QR코드

DOI QR Code

Isolation and Characterization of Two Rare Mucoralean Species with Specific Habitats

  • Lee, Seo Hee (Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Nguyen, Thuong T.T. (Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Lee, Hyang Burm (Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University)
  • Received : 2018.06.18
  • Accepted : 2018.07.30
  • Published : 2018.09.01

Abstract

The order Mucorales, the largest in number of species within the Mucoromycotina, comprises typically fast-growing saprotrophic fungi. During a study of the fungal diversity of undiscovered taxa in Korea, two novel mucoralean strains, CNUFC-GWD3-9 and CNUFC-EGF1-4, were isolated from specific habitats including freshwater and fecal samples, respectively. On the basis of their morphological characteristics and sequence analyses of internal transcribed spacer and large subunit ribosomal DNA, the CNUFC-GWD3-9 and CNUFC-EGF1-4 isolates were confirmed to be Gilbertella persicaria and Pilobolus crystallinus, respectively. It is ecologically, pathologically, and mycologically significant to find such rare zygomycetous fungi in such specific habitats.

Keywords

References

  1. Hibbett DS, Binder M, Bischoff JF, et al. A higher-level phylogenetic classification of the Fungi. Mycol Res. 2007;111:509-547. https://doi.org/10.1016/j.mycres.2007.03.004
  2. Spatafora JW, Chang Y, Benny GL, et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 2016;108:1028-1046. https://doi.org/10.3852/16-042
  3. Benny GL, Humber RA, Voigt K. The zygomycetous fungi: the Phylum Entomophthoromycota and subphyla Kickxellomycotina, Mortierellomycotina, Mucoromycotina, and Zoopagomycotina. In McLaughlin DJ, Blackwell M, Spatafora JW, editors. Systematics of fungi, 2nd ed. Vol. VII, The Mycota., part A. Springer Verlag: New York, United States; 2014; p. 209-250.
  4. Walther G, Pawlowska J, Alastruey-Izquierdo A, et al. DNA barcoding in Mucorales: an inventory of biodiversity. Persoonia. 2013;30:11-47. https://doi.org/10.3767/003158513X665070
  5. Hoffmann K, Pawlowska J, Walther G, et al. The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies. Persoonia 2013;30:57-76. https://doi.org/10.3767/003158513X666259
  6. Nguyen TT, Lee SH, Bae S, et al. Characterization of two new records of Zygomycete species belonging to undiscovered taxa in Korea. Mycobiology. 2016;44:29-37. https://doi.org/10.5941/MYCO.2016.44.1.29
  7. Eddy ED. A storage rot of peaches caused by a new species of Choanephora. Phytopathology. 1925;15:607-610.
  8. Hesseltine CW. Gilbertella gen. nov. (Mucorales). Bull Torrey Bot Club. 1960;87:21-30. https://doi.org/10.2307/2483058
  9. Benny GL. Gilbertellaceae, a new family of the Mucorales (Zygomycetes). Mycologia. 1991;83:150-157. https://doi.org/10.1080/00275514.1991.12025991
  10. Voigt K, Olsson L. Molecular phylogenetic and scanning electron microscopical analyses places the Choanephoraceae and Gilbertellaceae in a monophyletic group within the Mucorales (Zygomycetes, Fungi). Acta Biol Hung. 2008;59:365-383. https://doi.org/10.1556/ABiol.59.2008.3.10
  11. Mehrotra MD. Fruit rot of tomato caused by Gilbertella persicaria. Sydowia. 1964;17:17-19.
  12. Pinho DB, Pereira OL, Soares DJ. First report of Gilbertella persicaria as the cause of soft rot of fruit of Syzygium cumini. Australasian Plant Dis Notes. 2014;9:143-146. https://doi.org/10.1007/s13314-014-0143-0
  13. Page RM. Light and the asexual reproduction of Pilobolus. Science. 1962;138:1238-1245. https://doi.org/10.1126/science.138.3546.1238
  14. Viriato A. Pilobolus species found on herbivore dung from the Sao Paulo Zoological Park, Brazil. Acta Bot Bras. 2008;22:614-620. https://doi.org/10.1590/S0102-33062008000300002
  15. Zygomycota; [cited 2018 Mar 19]. Available from: http://www.zygomycetes.org.
  16. Krug JC, Benny GL, Keller HW. Coprophilous fungi. In Mueller GM, Bills GF, Foster MS, editors. Biodiversity of fungi. 1st ed. Elsevier Academic Press: Burlington, United States; 2004; p. 468-499, 9780125095518.
  17. Souza CAF, Lima DX, Gurgel LMS, et al. Coprophilous Mucorales (ex Zygomycota) from three areas in the semi-arid of Pernambuco, Brazil. Braz J Microbiol. 2017;48:79-86. https://doi.org/10.1016/j.bjm.2016.09.008
  18. Boedijin KB. Notes on the Mucorales of Indonesia. Sydowia Ann Mycol Ser II. 1958;12:321-362.
  19. Richardson MJ. Records of coprophilous fungi from the Lesser Antilles and Puerto Rico. Caribb J Sci. 2008;44:206-214. https://doi.org/10.18475/cjos.v44i2.a8
  20. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis M.A., Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. Academic Press: New York, United States; 1990; p. 315-322.
  21. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172:4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  22. Lee HB. Molecular phylogenetic status of Korean strain of Podosphaera xanthii, a causal pathogen of powdery mildew on japanese thistle (Cirsium japonicum) in Korea. J Microbiol. 2012;50:1075-1080. https://doi.org/10.1007/s12275-012-2618-z
  23. Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:4876-4882. https://doi.org/10.1093/nar/25.24.4876
  24. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95-98.
  25. Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725-2729. https://doi.org/10.1093/molbev/mst197
  26. Hankin L, Anagnostakis SL. The use of solid media for detection of enzyme production by fungi. Mycologia. 1975;67:597-607. https://doi.org/10.1080/00275514.1975.12019782
  27. Tako M, Farkas E, Lung S, et al. Identification of acid-and thermotolerant extracellular beta-glucosidase activities in Zygomycetes fungi. Acta Biol Hung. 2010;61:101-110. https://doi.org/10.1556/ABiol.61.2010.1.10
  28. Tako M, Kotogan A, Krisch J, et al. Enhanced production of industrial enzymes in Mucoromycotina fungi during solid-state fermentation of agricultural wastes/by-products. Acta Biol Hung. 2015;66:348-360. https://doi.org/10.1556/018.66.2015.3.10
  29. William S. Akiko A. history of soy flour, grits and flakes (510 CE to 2013): extensively annotated bibliography and sourcebook (illustrated ed.). Soyinfo Center. 2013; p. 371.
  30. Mehrotra MD. Fruit rot of pear caused by Gilbertella persicaria var. indica. Sydowia. 1964;17:124-125.
  31. Mehrotra MD. Fruit rot of peach by Gilbertella persicaria var. indica from India. Mycopathol Mycol Appl. 1966;29:151-154. https://doi.org/10.1007/BF02055072
  32. Guo LW, Wu YX, Mao ZC, et al. Storage rot of dragon fruit caused by Gilbertella persicaria. Plant Dis. 2012;96:1826.
  33. Jones EBG, Hyde KD, Pang KL. Freshwater fungi and fungal-like organisms. Boston: De Gruyter; 2014.
  34. Nguyen TT, Pangging M, Lee HB. Three unrecorded fungal species from fecal and freshwater sample in Korea. Kor J Mycol. 2017;45:304-318.
  35. Foos KM, May NL, Beach DL, et al. Phylogeny of Pilobolaceae. Mycologia. 2011;103:36-44. https://doi.org/10.3852/09-314
  36. Foos KM, Jeffries BS. Sporangiospore variability in Pilobolus. Proc Indiana Acad Sci. 1988;98:105-108.
  37. Hu FM, Zheng RY, Chen GQ. A redelimitation of the species of Pilobolus. Mycosystema. 1989;2:111-133.
  38. Foos KM, Sheehan KB. Molecular identification of Pilobolus species from Yellowstone National Park. Mycologia. 2011;103:1208-1215. https://doi.org/10.3852/11-107

Cited by

  1. First reported case of Gilbertella persicaria in human stool: outcome of a community study from Segamat, Johor, Malaysia vol.51, pp.4, 2020, https://doi.org/10.1007/s42770-020-00323-z
  2. Early-diverging fungal phyla: taxonomy, species concept, ecology, distribution, anthropogenic impact, and novel phylogenetic proposals vol.109, pp.1, 2018, https://doi.org/10.1007/s13225-021-00480-y