DOI QR코드

DOI QR Code

토양 Column을 이용한 벼 재배 시 바이오차 팰렛의 양분용출 특성

Characteristics of Nutrient Release of Biochar Pellets through Soil Column during Rice Cultivation

  • 신중두 (국립농업과학원 기후변화생태과)
  • Shin, JoungDu (Department of Climate Change and Agro-ecology, National Institute of Agricultural Sciences)
  • 투고 : 2018.09.13
  • 심사 : 2018.09.19
  • 발행 : 2018.09.30

초록

본 연구는 토양 칼럼에 벼를 재배하면서 바이오차 팰렛처리에 따른 침출 수 및 토양 중의 작물 양분 이동 동태를 구명하기 위해 수행하였다. 칼럼 실험을 위한 시험구 처리는 돈분퇴비처리구를 대조구, 100% 돈분퇴비 팰렛구, 바이오차 팰렛 그리고 완효성비료 처리구로 구성되어있다. 연구 결과로서, 침출수 중의 $NH_4-N$의 농도는 이양후 35일을 정점으로 점차적으로 감소하였으며, $NO_3-N$의 농도는 이양 후 63-98일 사이에 가장 높게 관측 되었다. 침출수 중의 돈분 팰렛 및 바이오차 팰렛 처리구에서 $PO_4-P$의 농도가 가장 낮게 나타났다. 침출수 중의 K의 함량이 대조구에서 가장 높게 보인 반면, 완효성비료 처리구에서 가장 낮게 나타났다. 토양의 깊이별 $NH_4-N$의 농도는 40-60cm사이가 가장 높게 났으며, 돈분 팰렛 처리구를 제외하고 처리구 간에 유의차가 없었다. 또한 토양 깊이가 깊을수록 $NH_4-N$의 농도가 높게 관측 되었다. 반면에 $PO_4-P$의 농도는 완효성비료 처리구를 제외하고 토양깊이가 깊을수록 낮게 나타났다. 대조구에서 $PO_4-P$의 농도가 가장 높았다. 토양중의 가리의 이동 패턴은 대조구와 돈분 퇴비 팰렛구, 그리고 바이오차 팰렛구와 완효성처리구가 비슷한 것으로 나타났다. 그러므로 벼 재배 시 바이오차 팰렛을 시용함으로쎄 식물 양분 이동에 의한 손실을 줄일 수 있는 것으로 사료 되다.

This experiment was conducted to investigate nutrient leaching and mobility through soil column for application of biochar pellet during rice cultivation. For nutrient leaching through soil column experiment, it was also consisted with four treatments as control, 100% of pig manure compost pellet (PMCP), biochar pellet (pig manure compost:biochar, 6:4)(BP), and slow release fertilizer (SRF). For experimental results, it was observed that $NH_4-N$ concentration in the leachate was gradually decreased at pick of 35 days and $NO_3-N$ concentration was highest from 60 to 98 days after transplanting. $PO_4-P$ concentration in the leachate was shown to be lowest in the PMCP and BP. K concentration in the leachate was highest in the control, but lowest in SRF. For mobility of nutrient in soil depths, it shown that $NH_4-N$ concentrations were highest from 40 to 60cm and did not significantly different among treatments except the control. It was observed that the deeper depth, the higher concentration for $NH_4-N$ concentrations, but for $PO_4-P$ concentrations the deeper depth, the lower concentration. And also $PO_4-P$ concentration was highest in the control. For K mobility in soil, its pattern was appeared to be approximately same between the control and PMCP, and between BP and SRF. Therefore, it might be potential to be applied biochar pellet to reduce mobility of plant nutrients for rice cultivation.

키워드

참고문헌

  1. Laird, A. D., "The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality", Agron. J., 100(1), pp. 178-184. (2008). https://doi.org/10.2134/agronj2007.0161
  2. Lehmann, J., Kern, D. C., Glaser, B. and Woods, W. I. (Eds.) Management.
  3. MIFAFF (2010) Annual Statistics in Food, Agriculture, Fisheries and Forestry in 2009. Korean Ministry for Food, Agriculture, Fisheries and Forestry (2004).
  4. Hammes, K. and Schmidt, M., Changes in biochar in soil. In: Lemann, J., Joseph, S. (Eds.), Biochar for Environmental Management. Earthscan, pp. 169-182. (2009).
  5. Hua, L., Wu, W. X., Liu, Y. X., McBride, M. and Chen, Y. X., "Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment", Environmental Science and Pollution Research, 16(1), pp. 1-9. (2009). https://doi.org/10.1007/s11356-008-0041-0
  6. Ro, K. S., Cantrell, K. B. and Hunt, P. G., "High-Temperature Pyrolysis of Blended Animal manures for Producing Renewable Energy and Value-Added Biochar", Industrial and Engineering Chemistry Research, 49(20), pp. 10125-10131. (2010). https://doi.org/10.1021/ie101155m
  7. Husk, B. and Major, J., Commercial scale agricultural biochar field trial in Quebec, Canada, over two years: Effect of biochar on soil fertility, biology, crop productivity and quality. Blue Leaf (2008).
  8. Major, J., Lehmann, J., Rondon, M. and Goodale, C., "Fate of soil applied black carbon: downward migration, leaching and soil respiration", Global Change Biology, 16(4), pp. 1366-1379. (2010). https://doi.org/10.1111/j.1365-2486.2009.02044.x
  9. Reza, M. T., Lynam, L. G., Vasquez, V. R. and Coronella, C. J., Pelletization of Biochar from Hydrothermally Carbonized Wood. Environmental Progress and Sustainable Energy, 31(2), pp. 225-234. (2012). https://doi.org/10.1002/ep.11615
  10. Abdullah, H. and Wu, H., "Biochar as Fuel: 1. Properties and Grindability of Biochars Produced from the Pyrolysis of Mallee Wood under Slow-Heating Conditions", Energy and Fuels, 23(8), pp. 4174-4182. (2009). https://doi.org/10.1021/ef900494t
  11. Cantrell, K. B. and Martin II, J. H., Poultry litter and switchgrass blending and pelleting characteristics for biochar production. ASABE Annual International Meeting, 2012, Dallas, Texas. American Society of Agricultural and Biological Engineers. pp. 12-13. (2012).
  12. Fernandez-Escobar, R., Benlloch, M., Herrera, E. and Garcia-Novelo, J. M., "Effect of traditional and slow-release N fertilizers on growth of olive nursery plants and N losses by leaching", Scientia Horticulturae, 101(1-2), pp. 39-49. (2004). https://doi.org/10.1016/j.scienta.2003.09.008
  13. Mortain, L., Dez, I. and Madec, P. J., "Development of new composites materials, carriers of active agents from biodegradable polymers and wood", Comptes Rendus Chimie, 7(6-7), pp. 635-640. (2004). https://doi.org/10.1016/j.crci.2004.03.006
  14. Liang, X. Q., Chen, Y. X., Li, H., Tian, G. M., Ni, W. Z., He, M. M. and Zhang, Z. J., "Modeling transport and fate of nitrogen from urea applied to a near-trench paddy field, Environ", Pollut., 50, pp. 313-320. (2007).
  15. Chu, H., Hosen, Y. and Yagi, K., "No, $N_2O$, $CH_4$ and $CO_2$ fluxes in winter barely field of Japanese Andisol as affected by N fertilizer management", Soil Biol. Biochem., 39, pp. 330-339. (2007). https://doi.org/10.1016/j.soilbio.2006.08.003
  16. Shin, J., Choi, E., Jang, E. S., Hong S. G., Lee S. and Ravindran B., "Adsorption Characteristics of Ammonium Nitrogen and Plant Responses to Biochar Pellet", Sustainability, 10(5), pp. 1331-1342. (2018). https://doi.org/10.3390/su10051331
  17. Ramanan, V., Thiyagarajan, S. K., Raji, K., Suresh, R. and Ramamurthy, P., "Outright green synthesis of fluorescent carbon dots from eutrophic algal blooms for in vitro imaging", ACS Sustain. Chem. Eng. 4, pp. 4724-4731. (2016). https://doi.org/10.1021/acssuschemeng.6b00935
  18. Rahman, M. M., Liu, Y. H., Kwang, J. H. and Ra, C. S., "Recovery of struvite from animal wastewater and its nutrient leaching loss in soil", J. Hazard Mater., 186, pp. 2026-2030. (2011). https://doi.org/10.1016/j.jhazmat.2010.12.103