DOI QR코드

DOI QR Code

통영 미륵도 주변 백악기 화산암류의 복식 마그마와 그 진화

Multiple Magmas and Their Evolutions of the Cretaceous Volcanic Rocks in and around Mireukdo Island, Tongyeong

  • 황상구 (안동대학교 지구환경과학과) ;
  • 이소진 (안동대학교 지구환경과학과) ;
  • 안웅산 (제주특별자치도 세계유산본부) ;
  • 송교영 (한국지질자원연구원 국토지질연구부)
  • Hwang, Sang Koo (Department of Earth and Environmental Science, Andong National University) ;
  • Lee, So Jin (Department of Earth and Environmental Science, Andong National University) ;
  • Ahn, Ung San (World Natural Heritage Office, Jeju Special Self-Governing Province) ;
  • Song, Kyo-Young (Korea Institute of Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2018.09.03
  • 심사 : 2018.09.20
  • 발행 : 2018.09.30

초록

미륵도와 주변 백악기 화산암류에 대한 주원소, 미량원소의 암석화학적 특성으로부터 이 화산암류의 조구조적 배경과 마그마 진화를 고찰하였다. 이 화산암류는 주사산아층군, 운문사아층군, 욕지아층군과 사량아층군으로 구분되며, TAS도에서 현무암-현무암질 안산암-안산암-데사이트-유문암으로 분류된다. 이 지역에서 암석화학적 변화는 대체로 분별결정작용에 의한 마그마 진화를 설명해줄 수 있다. 암석화학적 특징은 대부분 칼크알칼리 계열에 속하고 전반기에는 중-K 계열 화산암류가 우세하지만 후반기로 가면서 고-K 계열의 화산암류가 우세하게 분출되었음을 나타낸다. 주원소와 미량원소 판별도에서 모두 조산대에 속하고 섭입대에 관련된 화산호 환경을 지시하는 조구조 양상을 가진다. 이 화산암류는 칼크알칼리 마그마가 균질한 근원암에서 분리되어 형성되고 공급지에서 지표까지 독립노선을 따르는 경우를 제공한다. 선기와 후기 아층군의 마그마는 지표로 올라오면서 다른 노선을 취하고, 이 화산과정의 전반을 통해 일련의 별도 마그마챔버로서 천부 지각에 정치되고, 각 챔버는 분별결정작용과 소량의 동화작용에 의해 독자적으로 진화하였다. 마그마 성인은 해양판의 섭입과 관련하여 상부맨틀의 부분용융으로 생성되었고 일차마그마로부터의 분별결정작용으로 안산암질 마그마를 형성하였을 가능성을 시사한다. 이 안산암질 마그마는 지속적인 분별결정작용과 벽암 동화작용의 수반으로 인하여 유문암질 마그마로 진화하였음을 나타낸다.

We have examined the petrotectonic setting and magmatic evolution from petrochemical characteristics of major and trace elements for the Cretaceous volcanic rocks in and around the Mireukdo Island. The volcanic rocks, can be devided into Jusasan, Unmunsa, Yokji and Saryang subgroups on the ascending order, are classified as basalt, basaltic andesite, andesite, dacite and rhyolite on TAS diagram. Petrochemical data show that the rocks are calc-alkaline series, and suggest that erupted earlier medium-K series and later high-K series. The volcanic rocks provide a case in which the calc-alkaline magma are formed, not only from separate protoliths, but following separate paths from source to surface. Earlier and later subgroups take different paths to the surface respectively, and are emplaced in the shallow crust as a series of discrete magma chambers through the volcanic processes. After emplacement, each chamber evolves indepently through fractional crystallization with a little assimilation of wall rock. The volcanic rocks have close petrotectonic affinities with orogenic suite and subduction-related volcanic arc. The rhyolitic magma can be derived from calc-alkaline andesitic magma by fractional crystallization with crustal assimilation, which may be derived from a partial melt of peridotite in the upper mantle.

키워드

참고문헌

  1. Eichelberger, J.C. and Izbekov, P.E., 2000, Eruption of andesite triggered by dyke injection: contrasting cases at Karymsky Volcano, Kamchatka and Mt. Katmai, Alaska. Philohospical Transactions of the Royal Society of Lon- don, 358, 1465-1485. https://doi.org/10.1098/rsta.2000.0599
  2. Elliot, T.T., Zindler, A., White, W. and Bourdon, B., 1997, Element transport from slab to volcanic front at the Mar- iana Arc. Journal of Geophysical Research, 102, 14,991- 15,019. https://doi.org/10.1029/97JB00788
  3. Gill, J.B., 1981, Orogenic andesites and plate tectonics. Springer, Berlin Heidelberg, New York, 390p.
  4. Hildreth, W. 1983, The compositionally zoned eruption of 1912 in the Valley of Ten Thousand Smokes, Katmai National Park, Alaska. Journal of Volcanology and Geo- thermal Research, 18, 1-56. https://doi.org/10.1016/0377-0273(83)90003-3
  5. Hwang, S.K., 2012, Tectonic Setting and Arc Volcanisms of the Gyeongsang Arc in the Southeastern Korean Penin- sula. Journal of the Petrological Society of Korea, 21, 367-383 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2012.21.3.367
  6. Hwang, S.K., Kim, S.W., 1994, Petrology of Cretaceous volcanic rocks in the Miryang-Yangsan Area, Korea (I): petrotectonic setting. Journal of the Geological Society of Korea, 30, 229-241 (in Korean with English abstract).
  7. Hwang, S.K., Lee, S.J., Song, K.Y. and Yi, K., 2018, SHRIMP U-Pb Dating and Chronostratigraphy of the Volcanic Rocks around the Mireukdo Island, Tongyeong, Korea. Journal of the Petrological Society of Korea, 27, 67-78 (in Korean with English abstract).
  8. Hwang, S.K., Park, S.H. and Song, K.-Y., 2016, Explanatory text of the geological map of Mijo.Mireukdo Sheets. Korea Institute of Geoscience and Mineral Resources, 78p.
  9. Irvine, T.N. and Baragar, W.R.A, 1971, A guide to the chemical classification of the common volcanic rocks. Canadian J. Earth Sci., 8, 523-548. https://doi.org/10.1139/e71-055
  10. Johnston, A.D. and and Wylie, P.J., 1989, The system tonalite-peridotite-$H_2O$ at 30kbar, with applications to hydridization in subduction zone magmatism. Contributions to Mineralogy and Petrology, 102, 257-264. https://doi.org/10.1007/BF00373719
  11. Johnson, D.M., Hooper, P.R. and Conrey, R.M., 1999, XRF analysis of rocks and minerals for major and trace ele- ments on a single low dilution Li-tetraborate fused bead. Advanced in X-ray Analysis, 41, 843-867.
  12. Jwa, Y.-J. and Park, J.-M., 1996, Petrology of the igneous rocks in the Goseong area, Gyeongsang basin I. major element geochemistry and K-Ar radiometric age. Economic and Environmental Geology, 29, 562-573 (in Korean with English abstract).
  13. Kim, J.S., Lee, J.D. and Jeong, M.I., 1999, Petrochemical study on the Cretaceous volcanic rocks in the Namhae island, Korea. Journal of Korean Earth Science Society, 20, 630-651 (in Korean with English abstract).
  14. Kuno, H., 1968, Differentiation of basalt magmas. In: Hess H.H. and Poldervaart A.(eds.), Basalts: The Poldervaart treatise on rocks of basaltic composition. Vol. 2. Interscience, New York, 623-688.
  15. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. and Zanettin, B., 1986, A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745-750. https://doi.org/10.1093/petrology/27.3.745
  16. Lee, C.-H. and Lee, S.-W., 1999, Petrology and petrochem- istry of the granitoids in the Geoje Island, Korea. Journal of Korean Earth Science Society, 20, 62-79 (in Korean with English abstract).
  17. Le Maitre, R.W., 1984, A proposal by the IUGS Subcom- mission on the Systematics of Igneous Rocks for a chem- ical classification of volcanic rocks based on the total alkali silica (TAS) diagram. American Journal of Earth Sciences, 31, 243-255. https://doi.org/10.1080/08120098408729295
  18. McCulloch, M.T. and Gamble, J.A., 1991, Geochemical and geodynamical constraint on subduction zone magmatism. Earth and Planetary Science Letters, 102, 358-374. https://doi.org/10.1016/0012-821X(91)90029-H
  19. Nakamura, N., 1974, Determination of Ree, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38, 757-773. https://doi.org/10.1016/0016-7037(74)90149-5
  20. Nicholls, I.A. and Ringwood, A.E., 1973, Effect of water on olivine stability in tholeiites and production of silica-saturated magmas in the island arc environment. Journal of Geology, 81, 285-300. https://doi.org/10.1086/627871
  21. Park, M.-E., Sung, K.-Y., James, L.P., 2001, Au-Ag-Te mineralization by boiling and dilution of meteoric groundwater in the Tongyeong ephithermal gold system, Korea: implications from reaction path modeling. Economic and Environmental Geology, 34, 507-522.
  22. Pearce, J.A., Harris, N.B.W. and Tindle, A.G., 1984, Trace element discrimination diagram for the tectonic interpre- tation of granitic rocks. Journal of Petrology, 25, 956-983. https://doi.org/10.1093/petrology/25.4.956
  23. Pearce, T.H., Gorman, B.E., Birkett, T.C., 1977, The relationship between major element geochemistry and tectonic environment of basic and intermediate volcanic rocks. Earth and Planetary Science Letters, 36, 121-132. https://doi.org/10.1016/0012-821X(77)90193-5
  24. Perfit,, M.R., Brueckner, H., Lawrence, J.R. and Kay, R.W., 1980, Trace element and isotopic variations in a zoned pluton and associated volcanic rocks, Unalaska Island, Alaska: Model for fractionation in the Aleutian calc-alkaline suite. Contributions to Mineralogy and Petrology, 73, 69-87. https://doi.org/10.1007/BF00376261
  25. Plank, T. and Langmuir, C.H., 1998, The geochemical composition of subducting sediment and its consequences for the crust and mantle. Chemicl Geology, 145, 325-394. https://doi.org/10.1016/S0009-2541(97)00150-2
  26. Powell, M., 1978, Crystallization conditions of low-pressure cumulate nodules from the Lesser Antilles island arc. Earth and Planetary Science Letters, 39, 162-172. https://doi.org/10.1016/0012-821X(78)90152-8
  27. Price, R.C., Stewart, R.B., Woodhead, J.D. and Smith, I.E.M.., 1999, Petrogenesis of high-K arc magmas:Evidence from Egmont Volcano, North Island, New Zealand. Journal of Petrology, 40, 167-197. https://doi.org/10.1093/petroj/40.1.167
  28. Saunders, A.D., Tarney, J. and Weaver, S.D., 1980, Trasverse geochemical variations across the Antarctic Peninsula: Implications for the genesis of calc-alkaline magmas. Earth and Planetary Science Letters, 46, 344-360. https://doi.org/10.1016/0012-821X(80)90050-3
  29. Sekine, T. and P.J. Wylie, 1982, Phase relationships in the system $KALSiO_4 -Mg SiO4-SiO_2-H_2O$ as a model for hybridization between hydrous siliceous melts and peridotite. Contributions to Mineralogy and Petrology, 79, 368-374. https://doi.org/10.1007/BF01132066
  30. Sun, S.S. and Nesbitt, R.W., 1977, Chemical heterogeity of the Archean mantle: composition of the earth and mantle evolution. Earth and Planetary Science Letters, 35, 429-448. https://doi.org/10.1016/0012-821X(77)90076-0
  31. Wilson, M., 1989, Igneous petrogenesis. Unwin Hyman, London, 466p.
  32. Winchester, J.A. and Floyd, P.A., 1977, Geochemical discrimination of different magma series and their differentiation products using immobile element. Chemical Geology, 20, 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
  33. Wood, D.A., 1980, The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50, 11-30. https://doi.org/10.1016/0012-821X(80)90116-8
  34. Woodhead, J.D. and Johnson, R.W., 1993, Isotopic and trace-element profiles across the New Britian island arc, Papua New Guinea. Contributions to Mineralogy and Petrology, 113, 479-491. https://doi.org/10.1007/BF00698317
  35. Woodhead, J.D., Eggins, S. and Gamble, J, 1993, High field strength and transition element systematics in island arc and back arc basin basalts:Evidence for multiphase melt extraction and a depleted mantle wedge. Earth and Planetary Science Letters, 114, 491-504. https://doi.org/10.1016/0012-821X(93)90078-N
  36. Yun, S.H., Lee, J.D., Lee, S.W., Koh, J.S. and Seo, Y.J., 1997, Petrology of the volcanic rocks in Geoje island, South Korea. Journal of the Petrological Society of Korea, 6, 1-18 (in Korean with English abstract).