DOI QR코드

DOI QR Code

Korean Red Ginseng mitigates spinal demyelination in a model of acute multiple sclerosis by downregulating p38 mitogen-activated protein kinase and nuclear factor-κB signaling pathways

  • Lee, Min Jung (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University) ;
  • Chang, Byung Joon (Department of Anatomy, College of Veterinary Medicine, Konkuk University) ;
  • Oh, Seikwan (Department of Neuroscience and Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University) ;
  • Nah, Seung-Yeol (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University) ;
  • Cho, Ik-Hyun (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University)
  • Received : 2016.09.19
  • Accepted : 2017.04.26
  • Published : 2018.10.15

Abstract

Background: The potential therapeutic values of Korean Red Ginseng extract (KRGE) in autoimmune disorders of nervous system have not been fully investigated. Methods: We used an acute experimental autoimmune encephalomyelitis animal model of multiple sclerosis and determined the effects and mechanism of KRGE on spinal myelination. Results: Pretreatment with KRGE (100 mg/kg, orally) for 10 days before immunization with myelin basic protein $(MBP)_{68-82}$ peptide exerted a protective effect against demyelination in the spinal cord, with inhibited recruitment and activation of immune cells including microglia, decreased mRNA expression of detrimental inflammatory mediators (interleukin-6, interferon-${\gamma}$, and cyclooxygenase-2), but increased mRNA expression of protective inflammatory mediators (insulin-like growth factor ${\beta}1$, transforming growth factor ${\beta}$, and vascular endothelial growth factor-1). These results were associated with significant downregulation of p38 mitogen-activated protein kinase and nuclear factor-${\kappa}B$ signaling pathways in microglia/macrophages, T cells, and astrocytes. Conclusion: Our findings suggest that KRGE alleviates spinal demyelination in acute experimental autoimmune encephalomyelitis through inhibiting the activation of the p38 mitogen-activated protein kinase/nuclear factor-${\kappa}B$ signaling pathway. Therefore, KRGE might be used as a new therapeutic for autoimmune disorders such as multiple sclerosis, although further investigation is needed.

Keywords

References

  1. Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev 2015;15:545-58.
  2. Hoglund RA, Maghazachi AA. Multiple sclerosis and the role of immune cells. World J Exp Med 2014;4:27-37. https://doi.org/10.5493/wjem.v4.i3.27
  3. Volpe E, Battistini L, Borsellino G. Advances in T helper 17 cell biology: pathogenic role and potential therapy in multiple sclerosis. Mediators Inflamm 2015;2015:475158.
  4. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Rev 2001;22:153-83.
  5. Krementsov DN, Noubade R, Dragon JA, Otsu K, Rincon M, Teuscher C. Sexspecific control of central nervous system autoimmunity by p38 mitogenactivated protein kinase signaling in myeloid cells. Ann Neurol 2014;75:50-66. https://doi.org/10.1002/ana.24020
  6. Karunakaran S, Ravindranath V. Activation of p38 MAPK in the substantia nigra leads to nuclear translocation of NF-kappaB in MPTP-treated mice: implication in Parkinson's disease. J Neurochem 2009;109:1791-9. https://doi.org/10.1111/j.1471-4159.2009.06112.x
  7. Mc Guire C, Prinz M, Beyaert R, van Loo G. Nuclear factor kappa B (NF-kappaB) in multiple sclerosis pathology. Trends Mol Med 2013;19:604-13. https://doi.org/10.1016/j.molmed.2013.08.001
  8. Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer- Gould A, Strober S, Cannella B, Allard J, et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 2002;8:500-8. https://doi.org/10.1038/nm0502-500
  9. Mycko MP, Papoian R, Boschert U, Raine CS, Selmaj KW. cDNA microarray analysis in multiple sclerosis lesions: detection of genes associated with disease activity. Brain 2003;126:1048-57. https://doi.org/10.1093/brain/awg107
  10. Hilliard B, Samoilova EB, Liu TS, Rostami A, Chen Y. Experimental autoimmune encephalomyelitis in NF-kappa B-deficient mice:roles of NF-kappa B in the activation and differentiation of autoreactive T cells. J Immunol 1999;163:2937-43.
  11. Levin MC, Jackson WC. Developing a therapeutic plan for treating MS: evidence for new treatments. J Clin Psychiatry 2014;75:e34. https://doi.org/10.4088/JCP.12100nr8c
  12. Thompson AJ, Toosy AT, Ciccarelli O. Pharmacological management of symptoms in multiple sclerosis: current approaches and future directions. Lancet 2010;9:1182-99. https://doi.org/10.1016/S1474-4422(10)70249-0
  13. Jeffery DR. Recent advances in treating multiple sclerosis: efficacy, risks and place in therapy. Ther Adv Chron Dis 2013;4:45-51. https://doi.org/10.1177/2040622312466279
  14. Liu S, Yi LZ, Liang YZ. Traditional Chinese medicine and separation science. J Separation Sci 2008;31:2113-37. https://doi.org/10.1002/jssc.200800134
  15. Cho I. Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 2012;36:342-53. https://doi.org/10.5142/jgr.2012.36.4.342
  16. Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, Kwak YS. Characterization of Korean Red Ginseng (Panax ginseng Meyer): history, preparation method, and chemical composition. J Ginseng Res 2015;39:384-91. https://doi.org/10.1016/j.jgr.2015.04.009
  17. Saba E, Jeon BR, Jeong DH, Lee K, Goo YK, Kwak D, Kim S, Roh SS, Kim SD, Nah SY, et al. A novel Korean Red Ginseng compound gintonin inhibited inflammation by MAPK and NF-kappaB pathways and recovered the levels of mir-34a and mir-93 in RAW 264.7 cells. Evid Based Complement Alternat Med 2015;2015:624132.
  18. Kim HJ, Kim P, Shin CY. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J Ginseng Res 2013;37:8-29. https://doi.org/10.5142/jgr.2013.37.8
  19. Bowie LE, Roscoe WA, Lui EM, Smith R, Karlik SJ. Effects of an aqueous extract of North American ginseng on MOG (35-55)-induced EAE in mice. Can J Physiol Pharmacol 2012;90:933-9. https://doi.org/10.1139/y2012-092
  20. Hwang I, Ahn G, Park E, Ha D, Song JY, Jee Y. An acidic polysaccharide of Panax ginseng ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells. Immunol Lett 2011;138:169-78. https://doi.org/10.1016/j.imlet.2011.04.005
  21. Zhu D, Liu M, Yang Y, Ma L, Jiang Y, Zhou L, Huang Q, Pi R, Chen X. Ginsenoside Rd ameliorates experimental autoimmune encephalomyelitis in C57BL/6 mice. J Neurosci Res 2014;92:1217-26. https://doi.org/10.1002/jnr.23397
  22. Lee MJ, Jang M, Choi J, Chang BS, Kim DY, Kim SH, Kwak YS, Oh S, Lee JH, Chang BJ, et al. Korean Red Ginseng and ginsenoside-Rb1/-Rg1 alleviate experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells and upregulating regulatory T cells. Mol Neurobiol 2016;53:1977-2002. https://doi.org/10.1007/s12035-015-9131-4
  23. Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW, Crystal RG, Darnell RB, Ferrante RJ, Fillit H, et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature 2012;490:187-91. https://doi.org/10.1038/nature11556
  24. Jang M, Lee MJ, Kim CS, Cho IH. Korean Red Ginseng extract attenuates 3-nitropropionic acid-induced Huntington's-like symptoms. Evid Based Complement Alternat Med 2013;2013:237207.
  25. Lee MJ, Jang M, Choi J, Lee G, Min HJ, Chung WS, Kim JI, Jee Y, Chae Y, Kim SH, et al. Bee venom acupuncture alleviates experimental autoimmune encephalomyelitis by upregulating regulatory T cells and suppressing Th1 and Th17 responses. Mol Neurobiol 2016;53:1419-45. https://doi.org/10.1007/s12035-014-9012-2
  26. Lee MJ, Bing SJ, Choi J, Jang M, Lee G, Lee H, Chang BS, Jee Y, Lee SJ, Cho IH. IKKbeta-mediated inflammatory myeloid cell activation exacerbates experimental autoimmune encephalomyelitis by potentiating Th1/Th17 cell activation and compromising blood brain barrier. Mol Neurodegen 2016;11:54. https://doi.org/10.1186/s13024-016-0116-1
  27. Piao ZG, Cho IH, Park CK, Hong JP, Choi SY, Lee SJ, Lee S, Park K, Kim JS, Oh SB. Activation of glia and microglial p38 MAPK in medullary dorsal horn contributes to tactile hypersensitivity following trigeminal sensory nerve injury. Pain 2006;121:219-31. https://doi.org/10.1016/j.pain.2005.12.023
  28. Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nuc Acid Res 1983;11:1475-89. https://doi.org/10.1093/nar/11.5.1475
  29. Cho IH, Hong J, Suh EC, Kim JH, Lee H, Lee JE, Lee S, Kim CH, Kim DW, Jo EK, et al. Role of microglial IKKbeta in kainic acid-induced hippocampal neuronal cell death. Brain 2008;131:3019-33. https://doi.org/10.1093/brain/awn230
  30. Lopes Pinheiro MA, Kooij G, Mizee MR, Kamermans A, Enzmann G, Lyck R, Schwaninger M, Engelhardt B, de Vries HE. Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim Biophys Acta 2016;1862:461-71. https://doi.org/10.1016/j.bbadis.2015.10.018
  31. Kipp M, van der Valk P, Amor S. Pathology of multiple sclerosis. CNS Neurol Disord Drug Target 2012;11:506-17. https://doi.org/10.2174/187152712801661248
  32. Jang M, Lee MJ, Cho IH. Ethyl pyruvate ameliorates 3-nitropropionic acidinduced striatal toxicity through anti-neuronal cell death and antiinflammatory mechanisms. Brain Behav Immun 2014;38:151-65. https://doi.org/10.1016/j.bbi.2014.01.015
  33. Jang M, Cho IH. Sulforaphane ameliorates 3-nitropropionic acid-induced striatal toxicity by activating the Keap1-Nrf2-ARE pathway and inhibiting the MAPKs and NF-kappaB pathways. Mol Neurobiol 2016;53:2619-35. https://doi.org/10.1007/s12035-015-9230-2
  34. Kennedy KJ, Strieter RM, Kunkel SL, Lukacs NW, Karpus WJ. Acute and relapsing experimental autoimmune encephalomyelitis are regulated by differential expression of the CC chemokines macrophage inflammatory protein-1alpha and monocyte chemotactic protein-1. J Neuroimmunol 1998;92:98-108. https://doi.org/10.1016/S0165-5728(98)00187-8
  35. Noubade R, Krementsov DN, Del Rio R, Thornton T, Nagaleekar V, Saligrama N, Spitzack A, Spach K, Sabio G, Davis RJ, et al. Activation of p38 MAPK in CD4 T cells controls IL-17 production and autoimmune encephalomyelitis. Blood 2011;118:3290-300. https://doi.org/10.1182/blood-2011-02-336552
  36. Lassmann H, van Horssen J. The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett 2011;585:3715-23. https://doi.org/10.1016/j.febslet.2011.08.004
  37. Lobsiger CS, Cleveland DW. Glial cells as intrinsic components of non-cellautonomous neurodegenerative disease. Nat Neurosci 2007;10:1355-60. https://doi.org/10.1038/nn1988
  38. Chen X, Ma X, Jiang Y, Pi R, Liu Y, Ma L. The prospects of minocycline in multiple sclerosis. J Neuroimmunol 2011;235:1-8. https://doi.org/10.1016/j.jneuroim.2011.04.006
  39. Choi JH, Lee MJ, Jang M, Kim EJ, Shim I, Kim HJ, Lee S, Lee SW, Kim YO, Cho IH. An oriental medicine, Hyungbangpaedok-San attenuates motor paralysis in an experimental model of multiple sclerosis by regulating the T cell response. PLoS One 2015;10:e0138592. https://doi.org/10.1371/journal.pone.0138592
  40. Liu X, Linnington C, Webster HD, Lassmann S, Yao DL, Hudson LD, Wekerle H, Kreutzberg GW. Insulin-like growth factor-I treatment reduces immune cell responses in acute non-demyelinative experimental autoimmune encephalomyelitis. J Neurosci Res 1997;47:531-8. https://doi.org/10.1002/(SICI)1097-4547(19970301)47:5<531::AID-JNR8>3.0.CO;2-I
  41. Bilbao D, Luciani L, Johannesson B, Piszczek A, Rosenthal N. Insulin-like growth factor-1 stimulates regulatory T cells and suppresses autoimmune disease. EMBO Mol Med 2014;6:1423-35. https://doi.org/10.15252/emmm.201303376
  42. Park JM, Shin YJ, Cho JM, Choi JY, Jeun SS, Cha JH, Lee MY. Upregulation of vascular endothelial growth factor receptor-3 in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis. J Histochem Cytochem 2013;61:31-44. https://doi.org/10.1369/0022155412462975
  43. Mirshafiey A, Mohsenzadegan M. TGF-beta as a promising option in the treatment of multiple sclerosis. Neuropharmacology 2009;56:929-36. https://doi.org/10.1016/j.neuropharm.2009.02.007
  44. Chu S, Gu J, Feng L, Liu J, Zhang M, Jia X, Liu M, Yao D. Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. Int Immunopharmacol 2014;19:317-26. https://doi.org/10.1016/j.intimp.2014.01.018
  45. Lo YT, Tsai YH, Wu SJ, Chen JR, Chao JC. Ginsenoside Rb1 inhibits cell activation and liver fibrosis in rat hepatic stellate cells. J Medicinal Food 2011;14:1135-43. https://doi.org/10.1089/jmf.2010.1485
  46. Shin T, Ahn M, Jung K, Heo S, Kim D, Jee Y, Lim YK, Yeo EJ. Activation of mitogen-activated protein kinases in experimental autoimmune encephalomyelitis. J Neuroimmunol 2003;140:118-25. https://doi.org/10.1016/S0165-5728(03)00174-7
  47. Cheng W, Zhao Q, Xi Y, Li C, Xu Y, Wang L, Niu X, Wang Z, Chen G. IFN-beta inhibits T cells accumulation in the central nervous system by reducing the expression and activity of chemokines in experimental autoimmune encephalomyelitis. Mol Immunol 2015;64:152-62. https://doi.org/10.1016/j.molimm.2014.11.012
  48. Wen YR, Suter MR, Ji RR, Yeh GC, Wu YS, Wang KC, Kohno T, Sun WZ, Wang CC. Activation of p38 mitogen-activated protein kinase in spinal microglia contributes to incision-induced mechanical allodynia. Anesthesiology 2009;110:155-65. https://doi.org/10.1097/ALN.0b013e318190bc16
  49. Bao J, Zhu J, Luo S, Cheng Y, Zhou S. CXCR7 suppression modulates microglial chemotaxis to ameliorate experimentally-induced autoimmune encephalomyelitis. Biochem Biophys Res Comm 2016;469:1-7. https://doi.org/10.1016/j.bbrc.2015.11.059
  50. Martin R, Hernandez M, Cordova C, Nieto ML. Natural triterpenes modulate immune-inflammatory markers of experimental autoimmune encephalomyelitis: therapeutic implications for multiple sclerosis. Br J Pharmacol 2012;166:1708-23. https://doi.org/10.1111/j.1476-5381.2012.01869.x
  51. Brereton CF, Sutton CE, Lalor SJ, Lavelle EC, Mills KH. Inhibition of ERK MAPK suppresses IL-23- and IL-1-driven IL-17 production and attenuates autoimmune disease. J Immunol 2009;183:1715-23. https://doi.org/10.4049/jimmunol.0803851
  52. Fukaya T, Someya K, Hibino S, Okada M, Yamane H, Taniguchi K, Yoshimura A. Loss of Sprouty4 in T cells ameliorates experimental autoimmune encephalomyelitis in mice by negatively regulating IL-1beta receptor expression. Biochem Biophys Res Comm 2014;447:471-8. https://doi.org/10.1016/j.bbrc.2014.04.012
  53. Hwang I, Ha D, Ahn G, Park E, Joo H, Jee Y. Experimental autoimmune encephalomyelitis: association with mutual regulation of RelA (p65)/NFkappaB and phospho-IkappaB in the CNS. Biochem Biophys Res Comm 2011;411:464-70. https://doi.org/10.1016/j.bbrc.2011.06.195
  54. Yune TY, Lee SM, Kim SJ, Park HK, Oh YJ, Kim YC, Markelonis GJ, Oh TH. Manganese superoxide dismutase induced by TNF-beta is regulated transcriptionally by NF-kappaB after spinal cord injury in rats. J Neurotrauma 2004;21:1778-94.

Cited by

  1. Red Ginseng Reduces Inflammatory Response via Suppression MAPK/P38 Signaling and p65 Nuclear Proteins Translocation in Rats and Raw 264.7 Macrophage vol.47, pp.7, 2018, https://doi.org/10.1142/s0192415x19500812
  2. Ginseng Gintonin Enhances Hyaluronic Acid and Collagen Release from Human Dermal Fibroblasts Through Lysophosphatidic Acid Receptor Interaction vol.24, pp.24, 2018, https://doi.org/10.3390/molecules24244438
  3. Natural Products and Their Bioactive Compounds: Neuroprotective Potentials against Neurodegenerative Diseases vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/6565396
  4. The “Treatise on the spleen and stomach” ( Pí Wèi Lùn ) as the first record of multiple sclerosis in the medical literature – A hypothesis based on the analys vol.10, pp.3, 2018, https://doi.org/10.1016/j.jtcme.2020.02.009
  5. Rg3-enriched Korean Red Ginseng extract inhibits blood-brain barrier disruption in an animal model of multiple sclerosis by modulating expression of NADPH oxidase 2 and 4 vol.45, pp.3, 2018, https://doi.org/10.1016/j.jgr.2020.09.001
  6. The Effect of Korean Red Ginseng on Symptoms and Inflammation in Patients With Allergic Rhinitis vol.100, pp.5, 2018, https://doi.org/10.1177/0145561320907172