DOI QR코드

DOI QR Code

AN EXTRAPOLATED HIGHER ORDER CHARACTERISTIC FINITE ELEMENT METHOD FOR NONLINEAR SOBOLEV EQUATIONS

  • Ohm, Mi Ray (Division of Mechatronics Engineering, Dongseo University) ;
  • Shin, Jun Yong (Department of Applied Mathematics, Pukyong National University)
  • 투고 : 2018.08.10
  • 심사 : 2018.09.03
  • 발행 : 2018.09.30

초록

In this paper, we introduce an extrapolated higher order characteristic finite element method to approximate solutions of nonlinear Sobolev equations with a convection term and we establish the higher order of convergence in the temporal and the spatial directions with respect to $L^2$ norm.

키워드

참고문헌

  1. D. N. Arnold, J. Jr. Douglas, and V. Thomee, Superconvergence of a finite approximation to the solution of a Sobolev equation in a single space variable, Math. Comp. 36 (1981) 53-63. https://doi.org/10.1090/S0025-5718-1981-0595041-4
  2. G. I. Barenblatt, I. P. Zheltov, and I. N. Kochian, Basic conception in the theory of seepage of homogenous liquids in fissured rocks, J. Appl. Math. Mech. 24 (1960) 1286-1309. https://doi.org/10.1016/0021-8928(60)90107-6
  3. R. W. Carroll and R. E. Showalter, Singular and degenerate Cauchy problems (Mathematics in Sciences and Engineering, Vol. 127), Academic Press, New York, 1976.
  4. P. L. Davis, A quasilinear parabolic and related third order problem, J. Math. Anal. Appl. 49 (1970) 327-335.
  5. J. Douglas and T. F. Russell Jr., Numerical methods for convection-dominated diffusion problems based on combining the method of characteristic with finite element or finite difference procedures, SIAM J. Numer. Anal. 19 (1982) 871-885. https://doi.org/10.1137/0719063
  6. R. E. Ewing, Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations, SIAM J. Numer. Anal. 15 (1978) 1125-1150. https://doi.org/10.1137/0715075
  7. H. Gu, Characteristic finite element methods for nonlinear Sobolev equations, Applied Math. Compu. 102 (1999) 51-62.
  8. L. Guo and H. Z. Chen, $H^1$-Galerkin mixed finite element method for the Sobolev equation, J. Sys. Sci. 26 (2006) 301-314.
  9. H. Guo and H. X. Rui, Least-squares Galerkin mixed finite element method for the Sobolev equation, Acta Math. Appl. Sinica 29 (2006) 609-618.
  10. Y. Lin, Galerkin methods for nonlinear Sobolev equations, Aequationes Mathematicae 40 (1990) 54-66. https://doi.org/10.1007/BF02112280
  11. Y. Lin and T. Zhang, Finite element methods for nonlinear Sobolev equations with nonlinear boundary conditions, Journal of Math. Anal. and Appl. 165 (1992) 180-191. https://doi.org/10.1016/0022-247X(92)90074-N
  12. M. T. Nakao, Error estimates of a Galerkin method for some nonlinear Sobolev equations in one space dimension, Numer. Math. 47 (1985) 139-157. https://doi.org/10.1007/BF01389881
  13. M. R. Ohm and H. Y. Lee, $L^2$-error analysis of fully discrete discontinuous Galerkin approximations for nonlinear Sobolev equations, Bull. Korean. Math. Soc. 48(5) (2011) 897-915. https://doi.org/10.4134/BKMS.2011.48.5.897
  14. M. R. Ohm, H. Y. Lee, and J. Y. Shin, $L^2$-error analysis of discontinuous Galerkin approximations for nonlinear Sobolev equations, J. Japanese Indus. Appl. Math. 30(1) (2013) 91-110. https://doi.org/10.1007/s13160-012-0096-7
  15. M. R. Ohm and J. Y. Shin, A Crank-Nicolson characteristic finite element method for Sobolev equations, East Asian Math. J. 32(5) (2016) 729-744. https://doi.org/10.7858/eamj.2016.051
  16. M. R. Ohm and J. Y. Shin, A Crank-Nicolson characteristic finite element method for nonlinear Sobolev equations, East Asian Math. J. 33(5) (2017) 295-308.
  17. M. R. Ohm and J. Y. Shin, An extrapolated Crank-Nicolson characteristic finite element method for Sobolev equations, Bull. Korean Math. Soc. 54(4) (2017) 1409-1419. https://doi.org/10.4134/BKMS.B160605
  18. M. R. Ohm and J. Y. Shin, An extrapolated higher order characteristic finite element method for Sobolev equations, East Asian Math. J. 33(5) (2017) 511-525. https://doi.org/10.7858/EAMJ.2017.035
  19. M. R. Ohm and J. Y. Shin, An extrapolated Crank-Nicolson characteristic finite element method for nonlinear Sobolev equations, J. Appl. Math. Inform. 36(3-4) (2018) 257-279. https://doi.org/10.14317/JAMI.2018.257
  20. A. Pehlivanov, G. F. Carey, and D. Lazarov, Least-squares mixed finite elements for second-order elliptic problems, SIAM J. Numer. Anal. 31 (1994) 1368-1377. https://doi.org/10.1137/0731071
  21. H. X. Rui, S. Kim, and S. D. Kim, A remark on least-squares mixed element methods for reaction-diffusion problems, J. Comput. Appl. Math. 202 (2007) 203-236. https://doi.org/10.1016/j.cam.2006.02.025
  22. D. Shi, Q. Tang, and W. Gong, A lower order characteristic-nonconforming finite element method for nonlinear Sobolev equation with convection-dominated term, Math. Comput. Simulation 114 (2015) 25-36. https://doi.org/10.1016/j.matcom.2014.03.008
  23. D. M. Shi, On the initial boundary value problem of nonlinear the equation of the migration of the moisture in soil, Acta math. Appl. Sinica 13 (1990) 31-38.
  24. T. Sun and D. Yang, A priori error estimates for interior penalty discontinuous Galerkin method applied to nonlinear Sobolev equations, Appl. Math. and Comput. 200 (2008) 147-159.
  25. T. Sun and D. Yang, Error estimates for a discontinuous Galerkin method with interior penalties applied to nonlinear Sobolev equations, Numer. Meth. Part. Differ. Equa. 24(3) (2008) 879-896. https://doi.org/10.1002/num.20294
  26. T. W. Ting, A cooling process according to two-temperature theory of heat conduction, J. Math. Anal. Appl. 45 (1974) 23-31. https://doi.org/10.1016/0022-247X(74)90116-4
  27. D. P. Yang, Some least-squares Galerkin procedures for first-order time-dependent convection-diffusion system, Comput. Methods Appl. Mech. Eng. 108 (1999) 81-95.
  28. D. P. Yang, Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems, Math. Comput. 69 (2000) 929-963.