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AN EXTRAPOLATED HIGHER ORDER CHARACTERISTIC

FINITE ELEMENT METHOD FOR NONLINEAR SOBOLEV

EQUATIONS

Mi Ray Ohm and Jun Yong Shin∗

Abstract. In this paper, we introduce an extrapolated higher order char-

acteristic finite element method to approximate solutions of nonlinear
Sobolev equations with a convection term and we establish the higher or-

der of convergence in the temporal and the spatial directions with respect

to L2 norm.

1. Introduction

In this paper, we will consider the following nonlinear Sobolev equation with
a convection term:

c(u)ut + d(u) · ∇u−∇ · (a(u)∇u)−∇ · (b(u)∇ut)
= f(x , t, u), in Ω× (0, T ],

u(x , t) = 0, on ∂Ω× (0, T ],

u(x , 0) = u0(x ), in Ω,

(1.1)

where Ω ⊂ Rm, 1 ≤ m ≤ 3, is a bounded convex domain with boundary ∂Ω and
c,d , a, b and f are known functions. For the theoretical results of the existence,
uniqueness, and regularity of Sobolev equations and their physical applications,
refer to [2, 3, 4, 23, 26] and the papers cited therein.

When Sobolev equations have no convection term, a lot of numerical tech-
niques such as classical finite element methods [1, 6, 10, 11, 12], least-squares
methods [9, 20, 22, 22, 28], mixed finite element methods [8], discontinuous finite
element methods [13, 14, 24, 25] are used to define their approximate solutions.
However, when there is a convection term to describe the convection dominated
diffusion, we generally use a characteristic method to consider both the time
derivative term and the convection term effectively. Especially, this technique
is very effective for convection dominated diffusion problems as shown in [5, 7].
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Gu in [7] and Shi et al [22] introduce a characteristic finite element method and
establish the higher order convergence in the spatial variable and the first order
convergence in the temporal variable for approximate solutions for a Sobolev
equation. However, the first order convergence in the temporal variable wors-
ens the higher order convergence in the spatial variable. So, Ohm and Shin in
[15, 17, 18] introduce a Crank-Nicolson or an extrapolated Crank-Nicolson char-
acteristic finite element method and a higher order characteristic finite element
method for a Sobolev equation to obtain the higher order of convergence in both
the spatial direction and the temporal direction in L2 normed space when the
given functions c(·) and d(·) depend only on x . And Ohm and Shin [16, 19]
introduce a Crank-Nicolson or an extrapolated Crank-Nicolson characteristic
finite element method for a nonlinear Sobolev equation with a convection term
to establish the higher order of convergence which extend their previous results
to the nonlinear Sobolev equation.

In this paper, we will introduce an extrapolated higher order characteristic
finite element method to construct approximate solutions of a nonlinear Sobolev
equation with a convection term and establish the higher order of convergence
in the temporal direction as well as in the spatial direction in L2 normed space.
These results also extend our previous work in [18] to the nonlinear Sobolev
equation. The outline of our paper is organized as follows. We state some
smoothness assumptions for u(x , t), the conditions for the given functions, and
basic notations in Section 2. In Section 3, we introduce finite element spaces
with basic approximation properties and some elliptic projection. In Section
4, we construct an extrapolated higher order characteristic finite element ap-
proximation of u(x , t) and obtain the higher order of convergence in L2 and H1

normed spaces.

2. Assumptions and notations

Throughout this paper, let W s,p(Ω) denote the Sobolev space equipped with
its norm ‖ · ‖s,p for an s ≥ 0 and 1 ≤ p ≤ ∞. For the sake of our convenience
and simplicity, instead of W s,2(Ω) and H0(Ω), we use the notation Hs(Ω) and
L2(Ω), respectively. Similarly, we use ‖ · ‖, ‖ · ‖∞, and ‖ · ‖s, instead of ‖ · ‖0,2,
‖ · ‖0,∞, and ‖ · ‖s,2, respectively. Let H1

0 (Ω) = {w ∈ H1(Ω) | w(x ) = 0 on ∂Ω}
and H s(Ω) = {w = (w1, w2, . . . , wm) | wi ∈ Hs(Ω), 1 ≤ i ≤ m} be the Sobolev

space equipped with its norm ‖w‖2s =
m∑
i=1

‖wi‖2s . For a given Banach space X

and t1, t2 ∈ [0, T ], we introduce Sobolev spaces with the corresponding norms:

Ws,p(t1, t2;X) =
{
w(x , t) | ‖∂

βw

∂tβ
(·, t)‖X ∈ Lp(t1, t2), 0 ≤ β ≤ s

}
,
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where

‖w‖Ws,p(t1,t2;X) =


(∑s

β=0

∫ t2
t1
‖∂

βw
∂tβ

(·, t)‖pXdt
)1/p

, 1 ≤ p <∞,

max0≤β≤s esssupt∈(t1,t2)‖∂
βw
∂tβ

(·, t)‖X , p =∞.

We will denote Lp(X) and Ws,p(X), instead of W0,p(0, T ;X) and Ws,p(0, T ;X),
respectively.

Assume that c(p),d(p) = (d1(p), d2(p), . . . , dm(p))T , a(p), b(p) and f(x , t, p)
satisfy

(A1) There exist constants c∗, c
∗, d∗, a∗, a

∗, b∗, and b∗ such that 0 < c∗ ≤
c(p) ≤ c∗, 0 < |d(p)| ≤ d∗, 0 < a∗ ≤ a(p) ≤ a∗, 0 < b∗ ≤ b(p) ≤ b∗, for

all p ∈ R, where |d(p)| =
m∑
i=1

d2
i (p).

(A2) dj

dpj a(p), d
j

dpj b(p), for j = 1, 2, 3, d
dpc(p), and d

dpdi(p) are bounded con-

tinuous functions.
(A3) f(x , t, p) is locally Lipschitz continuous in the third variable p, i.e. if

| p∗ − p | ≤ K̃ then |f(x , t, p∗)− f(x , t, p)| ≤ K(p, K̃)| p∗ − p |.
By following the idea in [5], let ν = ν(x , t) be the unit vector for a given (x , t)

such that ∂u
∂ν = c(u)

ψ(u)
∂u
∂t + d(u)

ψ(u) · ∇u, where ψ(u) = [c(u)2 + |d(u)|2]
1
2 . Then the

nonlinear Sobolev equation (1.1) can be rewritten as follows

ψ(u)
∂u

∂ν
−∇ · (a(u)∇u)−∇ · (b(u)∇ut) = f(x , t, u), in Ω× (0, T ],

u(x , t) = 0, on ∂Ω× (0, T ],

u(x , 0) = u0(x ), in Ω.

(2.1)

And the variational form of the equation (2.1) is given as follows: Find u(x , t) ∈
H1

0 (Ω) such that

(ψ(u)
∂u

∂ν
, τ) + (a(u)∇u,∇τ) + (b(u)∇ut,∇τ)

= (f(x, t, u), τ), ∀τ ∈ H1
0 (Ω),

u(x , 0) = u0(x ).

(2.2)

3. Finite element spaces and an elliptic projection

For h > 0, let {Srh} be a family of finite dimensional subspaces of H1
0 (Ω)

satisfying the following approximation and inverse properties: for φ ∈ H1
0 (Ω) ∩

W s,p(Ω), there exist a positive constant K1, independent of h, φ, and r, and a
sequence Phφ ∈ Srh such that for any 0 ≤ q ≤ s and 1 ≤ p ≤ ∞

‖φ− Phφ‖q ≤ K1h
µ−q‖φ‖s,
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where µ = min(r+1, s) and also there exist a positive constant K2 independent
of h and r, such that

‖ϕ‖1 ≤ K2h
−1‖ϕ‖ and ‖ϕ‖∞ ≤ K2h

−m2 ‖ϕ‖, ∀ϕ ∈ Srh.

For the sake of our error analysis, bilinear forms A and B are defined on
H1

0 (Ω)×H1
0 (Ω) for a given u as follows:

A(u : v, w) = (a(u)∇v,∇w), B(u : v, w) = (b(u)∇v,∇w). (3.1)

By following the idea in [10, 14] and the assumption (A1), there exists a differ-
entiable function ũ : [0, T ]→ Srh satisfying

A(u : u− ũ, χ) +B(u : ut − ũt, χ) = 0, ∀χ ∈ Srh,
(ũ(0), χ) = (u0, χ), ∀χ ∈ Srh.

(3.2)

Now letting η = u − ũ, we obtain the following two lemmas whose proofs can
be found in [15, 17].

Lemma 3.1. Let u0 ∈ Hs(Ω), ut, utt, uttt ∈ Hs(Ω), and ut ∈ L2(Hs(Ω)).
Then there exists a constant K, independent of h, such that

(i) ‖η‖+ h‖η‖1 ≤ Khµ(‖ut‖L2(Hs(Ω)) + ‖u0‖s),
(ii) ‖ηt‖+ h‖ηt‖1 ≤ Khµ(‖ut‖L2(Hs(Ω)) + ‖u0‖s + ‖ut‖s),
(iii) ‖ηtt‖1 ≤ Khµ−1(‖ut‖L2(Hs(Ω)) + ‖u0‖s + ‖ut‖s + ‖utt‖s),
(iv) ‖ηttt‖1 ≤ Khµ−1(‖ut‖L2(Hs(Ω)) + ‖u0‖s + ‖ut‖s + ‖utt‖s + ‖uttt‖s),

where µ = min(r + 1, s) and s ≥ 2.

Lemma 3.2. Let u0 ∈ Hs(Ω), u, ut, utt, uttt ∈ L∞(Hs(Ω)) ∩ L∞(W 1,∞(Ω)),
and ut ∈ L2(Hs(Ω)). If µ ≥ 1+ m

2 , then there exists a constant K, independent
of h, such that

max{‖η‖∞, ‖∇η‖∞, ‖∇ηt‖∞, ‖∇ηtt‖∞, ‖∇ηttt‖∞} ≤ K,

where µ = min(r + 1, s).

Throughout this paper, a generic positive constant K depends on the domain
Ω, K̃, and u(x , t) but is independent of the discretization magnitudes of the
spatial and the temporal directions. So any K in the different places does have
different values.

4. The optimal L∞(L2) and L∞(H1) error estimates

Let N be a given positive integer, ∆t = T/N a time step, and tn = n∆t

discrete time for 0 ≤ n ≤ N . Denote uj = u(x, tj), uj−
1
2 = 1

2 (uj + uj−1),
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tj−
1
2 = 1

2 (tj + tj−1), and d̃(·) = d(·)/c(·). From (2.2) and the definitions of
bilinear forms A and B, we have(

ψ(u(t
1
2 ))

∂u(t
1
2 )

∂ν
, χ
)

+A(u(t
1
2 ) : u(t

1
2 ), χ)

+B(u(t
1
2 ) : ut(t

1
2 ), χ) = (f(x , t

1
2 , u(t

1
2 )), χ), ∀χ ∈ Srh,

(4.1)

(
ψ(un+1)

∂un+1

∂ν
, χ
)

+A(un+1 : un+1, χ)

+B(un+1 : un+1
t , χ) = (f(x , tn+1, un+1), χ), ∀χ ∈ Srh, n ≥ 1

(4.2)

and so, we get (
c(u(t

1
2 ))

¯̄u1 − ˘̆u0

∆t
, χ
)

+A(u(t
1
2 ) : u

1
2 , χ)

+B(u(t
1
2 ) :

u1 − u0

∆t
, χ)

= (f(x , t
1
2 , u(t

1
2 )), χ) +Q1 +Q2 +Q3, ∀χ ∈ Srh,

(4.3)

(
c(un+1)

3
2u

n+1 − 2ˇ̌un + 1
2

ˆ̂un−1

∆t
, χ
)

+A(un+1 : un+1, χ)

+B(un+1 :
3
2u

n+1 − 2un + 1
2u

n−1

∆t
, χ)

= (f(x , tn+1, un+1), χ) + P1 + P2, ∀χ ∈ Srh, n ≥ 1

(4.4)

where ¯̄u1 = u(¯̄x , t1), ˘̆u0 = u(˘̆x , t0), ¯̄x = x+ 1
2 d̃(u(t

1
2 ))∆t, ˘̆x = x− 1

2 d̃(u(t
1
2 ))∆t,

Q1 = (c(u(t
1
2 )) ¯̄u1−˘̆u0

∆t − ψ(u(t
1
2 ))∂u(t

1
2 )

∂ν , χ), Q2 = A(u(t
1
2 ) : u

1
2 − u(t

1
2 ), χ),

and Q3 = B(u(t
1
2 ) : u1−u0

∆t − ut(t
1
2 ), χ), ˇ̌un = u(ˇ̌x , tn), ˆ̂un−1 = u(ˆ̂x , tn−1),

ˇ̌x = x − d̃(un+1)∆t, ˆ̂x = x − 2d̃(un+1)∆t, P1 = (c(un+1)
3
2u

n+1−2ˇ̌un+ 1
2

ˆ̂un−1

∆t −
ψ(un+1)∂u

n+1

∂ν , χ) , and P2 = B(un+1 :
3
2u

n+1−2un+ 1
2u

n−1

∆t − un+1
t , χ). Notice

that (4.3) is obtained at t = t
1
2 by the Crank-Nicolson technique and (4.4) at

t = tn+1 by the backward three point technique. Both techniques are usually
used to get the higher order convergence in the temporal direction.

To avoid the difficulty of solving the system of nonlinear equations, an ex-
trapolated higher order characteristic finite element scheme for (1.1) is given as
follows: Find a sequence {unh}Nn=0 in Srh such that(

c(Eunh)
3
2u

n+1
h − 2ǔnh + 1

2 û
n−1
h

∆t
, χ
)

+A(Eunh : un+1
h , χ)

+B(Eunh :
3
2u

n+1
h − 2unh + 1

2u
n−1
h

∆t
, χ)

= (f(x , tn+1, Eunh), χ), ∀χ ∈ Srh, n = 1, . . . , N − 1,

(4.5)
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c(u

1
2

h )
ū1
h − ŭ0

h

∆t
, χ
)

+A(u
1
2

h : u
1
2

h , χ) +B(u
1
2

h :
u1
h − u0

h

∆t
, χ)

= (f(x , t
1
2 , u

1
2

h ), χ), ∀χ ∈ Srh,
(4.6)

u0
h(x ) = ũ(x , 0), (4.7)

where Eunh = 2unh − u
n−1
h , ǔnh = unh(x̌ ), ûn−1

h = un−1
h (x̂ ), x̌ = x − d̃(Eunh)∆t,

x̂ = x − 2d̃(Eunh)∆t, ū1
h = u1

h(x̄ ), ŭ0
h = u0

h(x̆ ), x̄ = x + 1
2 d̃(u

1
2

h )∆t, x̆ =

x − 1
2 d̃(u

1
2

h )∆t, and u
1
2

h = 1
2 (u1

h + u0
h). Notice that (4.5) and (4.6) are based on

the backward three point approximation and the Crank-Nicolson approximation

for ψ(u(t))∂u(t)
∂ν , respectively.

For our error analysis, we set ξn = unh − ũn and ∂tξ
n = ξn−ξn−1

∆t . For t = t1,
(4.6) is considered and the following theorem is given in [16].

Theorem 4.1. Let u and {unh} be solutions of (2.2) and (4.5)-(4.7), respec-
tively. In addition to the assumptions of Lemma 3.2, if µ ≥ 1 + m

2 , u ∈
L∞(H3(Ω)), and ∆t = O(h), then

‖∇ξ1‖2 + ∆t(‖∂tξ1‖2 + ‖∇∂tξ1‖2) ≤ K∆t(h2µ + (∆t)4),

where µ = min(r + 1, s).

For t = tn, we will try to prove the following theorem.

Theorem 4.2. Under the same assumptions of Theorem 4.1, we have

max
0≤n≤N

[
‖un − unh‖+ h‖∇(un − unh)‖

]
≤ K(hµ + (∆t)2),

where µ = min(r + 1, s).

Proof. First, we will prove, by mathematical induction, that there exist 0 <
h̃ < 1 and 0 < ∆̃t < 1 such that

‖∇ξn‖2 + ∆t(‖∂tξn‖2 + ‖∇∂tξn‖2) ≤ K(h2µ + (∆t)4) (4.8)

for any 0 < h < h̃, 0 < ∆t < ∆̃t and n = 1, 2, . . . , N . We define Eu0
h = 0 for

our simplicity and convenience. By Theorem 4.1, (4.8) holds for n = 1. Now we
assume that (4.8) holds for n ≤ l − 1. Notice that ‖ξn‖∞ ≤ K, 0 ≤ n ≤ l − 1.
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Using (4.4) and (4.5) with 1 ≤ n ≤ l − 1 and χ = ∂tξ
n+1, we get(

c(Eunh)
3
2 (un+1 − un+1

h )− 2(ˇ̌un − ǔnh) + 1
2 (ˆ̂un−1 − ûn−1

h )

∆t
, ∂tξ

n+1
)

+A(Eunh : un+1 − un+1
h , ∂tξ

n+1)

+B(Eunh :
3
2 (un+1 − un+1

h )− 2(un − unh) + 1
2 (un−1 − un−1

h )

∆t
, ∂tξ

n+1)

=
(

(c(Eunh)− c(un+1))
3
2u

n+1 − 2ˇ̌un + 1
2

ˆ̂un−1

∆t
, ∂tξ

n+1
)

+
(

(a(Eunh)− a(un+1))∇un+1,∇∂tξn+1
)

+
(

(b(Eunh)− b(un+1))
3
2∇u

n+1 − 2∇un + 1
2∇u

n−1

∆t
,∇∂tξn+1)

+ (f(x , tn+1, un+1)− f(x , tn+1, Eunh), ∂tξ
n+1) + P1 + P2.

(4.9)

And so, we get(
c(Eunh)

3
2ξ
n+1 − 2ξ̌n + 1

2 ξ̂
n−1

∆t
, ∂tξ

n+1
)

+A(Eunh : ξn+1, ∂tξ
n+1)

+B(Eunh :
3
2ξ
n+1 − 2ξn + 1

2ξ
n−1

∆t
, ∂tξ

n+1)

=
(
c(Eunh)

3
2η
n+1 − 2η̌n + 1

2 η̂
n−1

∆t
, ∂tξ

n+1
)

−
(
c(Eunh)

2(ˇ̌un − ǔn)

∆t
, ∂tξ

n+1
)

+
(
c(Eunh)

1
2 (ˆ̂un−1 − ûn−1)

∆t
, ∂tξ

n+1
)

+A(Eunh : ηn+1, ∂tξ
n+1)

+B(Eunh :
3
2η
n+1 − 2ηn + 1

2η
n−1

∆t
, ∂tξ

n+1)

−
(

(c(Eunh)− c(un+1))
3
2u

n+1 − 2ˇ̌un + 1
2

ˆ̂un−1

∆t
, ∂tξ

n+1
)

−
(

(a(Eunh)− a(un+1))∇un+1,∇∂tξn+1
)

−
(

(b(Eunh)− b(un+1))
3
2∇u

n+1 − 2∇un + 1
2∇u

n−1

∆t
,∇∂tξn+1)

− (f(x , tn+1, Eunh)− f(x , tn+1, un+1), ∂tξ
n+1)− P1 − P2.

(4.10)

Notice that

3

2
ξn+1 − 2ξ̌n +

1

2
ξ̂n−1 =

3

2
(ξn+1 − ξn)− 1

2
(ξn − ξn−1)

− 1

2
(ξn−1 − ξ̂n−1)− 2(ξ̌n − ξn),

(4.11)
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3

2
ξn+1 − 2ξn +

1

2
ξn−1

= (ξn+1 − ξn) +
1

2
[(ξn+1 − ξn)− (ξn − ξn−1)].

(4.12)

Therefore, from (4.10), (4.11), and (4.12), we obtain(
c(Eunh)

3
2 (ξn+1 − ξn)− 1

2 (ξn − ξn−1)

∆t
, ∂tξ

n+1
)

+A(Eunh : ξn+1, ∂tξ
n+1)

+B(Eunh :
(ξn+1 − ξn) + 1

2 [(ξn+1 − ξn)− (ξn − ξn−1)]

∆t
, ∂tξ

n+1)

=
1

2

(
c(Eunh)

(ξn−1 − ξ̂n−1
h )

∆t
, ∂tξ

n+1
)

+ 2
(
c(Eunh)

(ξ̌n − ξn)

∆t
, ∂tξ

n+1
)

+
(
c(Eunh)

3
2 (ηn+1 − ηn)− 1

2 (ηn − ηn−1)

∆t
, ∂tξ

n+1
)

−
(
c(Eunh)

1
2 (ηn−1 − η̂n−1) + 2(η̌n − ηn)

∆t
, ∂tξ

n+1
)

− 2
(
c(Eunh)

(ˇ̌un − ǔn)

∆t
, ∂tξ

n+1
)

+
1

2

(
c(Eunh)

(ˆ̂un−1 − ûn−1)

∆t
, ∂tξ

n+1
)

+A(Eunh : ηn+1, ∂tξ
n+1)−A(un+1 : ηn+1, ∂tξ

n+1)

+B(Eunh :
3
2η
n+1 − 2ηn + 1

2η
n−1

∆t
− ηn+1

t , ∂tξ
n+1)

+B(Eunh : ηn+1
t , ∂tξ

n+1)−B(un+1 : ηn+1
t , ∂tξ

n+1)

−
(

(c(Eunh)− c(un+1))
3
2u

n+1 − 2ˇ̌un + 1
2

ˆ̂un−1

∆t
, ∂tξ

n+1
)

−
(

(a(Eunh)− a(un+1))∇un+1,∇∂tξn+1
)

−
(

(b(Eunh)− b(un+1))
3
2∇u

n+1 − 2∇un + 1
2∇u

n−1

∆t
,∇∂tξn+1)

− (f(x , tn+1, Eunh)− f(x , tn+1, un+1), ∂tξ
n+1)−Q1 −Q2 =

17∑
i=1

Ri.

(4.13)

Now denoting three terms of the left-hand side of (4.13) by L1, L2 and L3, re-
spectively, the lower bounds of L1, L2 and L3 are given as follows:

L1 ≥ c∗‖∂tξn+1‖2 +
1

4
(‖
√
c(Eunh)∂tξ

n+1‖2 − ‖
√
c(Eun−1

h )∂tξ
n‖2)

+
1

4
(‖
√
c(Eun−1

h )∂tξ
n‖2 − ‖

√
c(Eunh)∂tξ

n‖2),



AN EXTRAPOLATED HIGHER ORDER CFEM 609

L2 ≥
1

2∆t
(‖
√
a(Eunh)∇ξn+1‖2 − ‖

√
a(Eun−1

h )∇ξn‖2)

+
1

2∆t
(‖
√
a(Eun−1

h )∇ξn‖2 − ‖
√
a(Eunh)∇ξn‖2),

L3 ≥ b∗‖∇∂tξn+1‖2 +
1

4
(‖
√
b(Eunh)∇∂tξn+1‖2 − ‖

√
b(Eun−1

h )∇∂tξn‖2)

+
1

4
(‖
√
b(Eun−1

h )∇∂tξn‖2 − ‖
√
b(Eunh)∇∂tξn‖2),

By applying these lower bounds of L1 ∼ L3 to (4.13), we get

c∗‖∂tξn+1‖2 + b∗‖∇∂tξn+1‖2

+
1

4
(‖
√
c(Eunh)∂tξ

n+1‖2 − ‖
√
c(Eun−1

h )∂tξ
n‖2)

+
1

2∆t
(‖
√
a(Eunh)∇ξn+1‖2 − ‖

√
a(Eun−1

h )∇ξn‖2)

+
1

4
(‖
√
b(Eunh)∇∂tξn+1‖2 − ‖

√
b(Eun−1

h )∇∂tξn‖2)

≤ 1

4
(‖
√
c(Eunh)∂tξ

n‖2 − ‖
√
c(Eun−1

h )∂tξ
n‖2)

+
1

2∆t
(‖
√
a(Eunh)∇ξn‖2 − ‖

√
a(Eun−1

h )∇ξn‖2)

+
1

4
(‖
√
b(Eunh)∇∂tξn‖2 − ‖

√
b(Eun−1

h )∇∂tξn‖2) +

17∑
i=1

Ri.

(4.14)

By using the assumption on (4.8) and ∆t = O(h), we get

‖Eunh − Eun−1
h ‖∞

= ‖E(unh − ũn)− E(un−1
h − ũn−1) + Eũn − Eũn−1‖∞

≤ ∆t
(

2‖∂tξn‖∞ + ‖∂tξn−1‖∞
)

+K∆t

≤ K∆t.

(4.15)

Hence, by the assumption (A2) and (4.15), (4.14) can be estimated as follows:
By the assumption (A1) and Cauchy-Schwartz inequality, we can estimate R1 ∼
R3 as follows: for an ε > 0

R1 ≤ ε‖∂tξn+1‖2 +K‖∇ξn−1‖2,
R2 ≤ ε‖∂tξn+1‖2 +K‖∇ξn‖2,

R3 =
3

2

(
c(Eunh)∂tη

n+1, ∂tξ
n+1
)
− 1

2

(
c(Eunh)∂tη

n, ∂tξ
n+1
)

≤ ε‖∂tξn+1‖2 +K(‖∂tηn+1‖2 + ‖∂tηn‖2).

Since

ηn−1 − η̂n−1 = 2∆t∇η(x̃ 1, t
n−1) · d̃(Eunh)
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and

ηn − η̌n = ∆t∇η(x̃ 2, t
n) · d̃(Eunh)

for some x̃ 1 ∈ (x̂ ,x ) and x̃ 2 ∈ (x̌ ,x ), by integration by parts, we have

R4 =
(
η(x̃ 1, t

n−1)d̃(Eunh),∇(c(Eunh)∂tξ
n+1)

)
+
(
η(x̃ 1, t

n−1)∇ · d̃(Eunh), c(Eunh)∂tξ
n+1
)

− 2
(
η(x̃ 2, t

n)d̃(Eunh),∇(c(Eunh)∂tξ
n+1)

)
− 2
(
η(x̃ 2, t

n)∇ · d̃(Eunh), c(Eunh)∂tξ
n+1
)

≤ ε‖∇∂tξn+1‖2 + ε‖∂tξn+1‖2 +K‖ηn‖2 +K‖ηn−1‖2

By Taylor expansion, we have

2(ǔn − ˇ̌un) +
1

2
(ˆ̂un−1 − ûn−1)

=2u(x − d̃(Eunh)∆t, tn)− 2u(x − d̃(un+1)∆t, tn)

+
1

2
u(x − 2d̃(un+1)∆t, tn−1)− 1

2
u(x − 2d̃(Eunh)∆t, tn−1)

=(d̃(un+1)− d̃(Eunh))∆t ∇un + (∆t)2(d̃(un+1)− d̃(Eunh))∇unt

− (∆t)3

3
(d̃(Eunh))3∇3un(x̃ 1) +

(∆t)3

3
(d̃(un+1))3∇3un(x̃ 2)

− 2(∆t)3

3
(d̃(un+1))3∇3un(x̃ 3)− (∆t)3(d̃(un+1))2∇2unt (x̃ 4)

− (∆t)3

2
d̃(un+1) ∇untt(x̃ 5)− 1

12
(∆t)3uttt(x − 2d̃(un+1)∆t, tn1 )

+
2(∆t)3

3
(d̃(Eunh))3∇3un(x̃ 6) + (∆t)3(d̃(Eunh))2∇2unt (x̃ 7)

+
(∆t)3

2
d̃(Eunh) ∇untt(x̃ 8) +

1

12
(∆t)3uttt(x − 2d̃(Eunh)∆t, tn2 )

where tn1 , t
n
2 ∈ (tn−1, tn), x̃ 1, x̃ 3, x̃ 4, x̃ 5 ∈ (ˆ̂x ,x ), and x̃ 2, x̃ 6, x̃ 7, x̃ 8 ∈ (x̂ ,x ).

Notice that

d̃(un+1)− d̃(Eunh)

=
c(un+1)[d(un+1)− d(Eunh)]− d(un+1)[c(un+1)− c(Eunh)]

c(un+1)c(Eunh)

and

‖un+1 − Eunh‖ ≤ ‖ηn+1‖+K(∆t)2 + 2‖ξn‖+ ‖ξn−1‖. (4.16)
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So we have

R5 +R6 = −2
(
c(Eunh)

(ˇ̌un − ǔn)

∆t
, ∂tξ

n+1
)

+
1

2

(
c(Eunh)

(ˆ̂un−1 − ûn−1)

∆t
, ∂tξ

n+1
)

≤ ε‖∂tξn+1‖2 +K[‖ηn+1‖2 + (∆t)4 + ‖ξn‖2 + ‖ξn−1‖2].

And we obtain the bound for R7 +R8 as follows:

R7 +R8 = ((a(Eunh)− a(un+1))∇ηn+1,∇∂tξn+1)

≤ ε‖∇∂tξn+1‖2 +K(‖ηn+1‖2 + ‖ξn‖2 + ‖ξn−1‖2 + (∆t)4).

Since
1

∆t

[3

2
ηn+1 − 2ηn +

1

2
ηn−1

]
− ηn+1

t = O((∆t)2),

we get

R9 ≤ ε‖∇∂tξn+1‖2 +K(∆t)4.

And for R10 +R11, by (4.17) and Lemma 3.2, we have

R10 +R11 = ((b(Eunh)− b(un+1))∇ηn+1
t ,∇∂tξn+1)

≤ ε‖∇∂tξn+1‖2 +K(‖ηn+1‖2 + ‖ξn‖2 + ‖ξn−1‖2 + (∆t)4).

Since
3

2
un+1 − 2ˇ̌u

n
+

1

2
ˆ̂u
n−1

= O(∆t),

we get

R12 ≤ ε‖∂tξn+1‖2 +K(‖ηn+1‖2 + ‖ξn‖2 + ‖ξn−1‖2 + (∆t)4).

Similarly, the bounds for R13 ∼ R17 are obtained as follows:

R13 ≤ ε‖∇∂tξn+1‖2 +K(‖ηn+1‖2 + ‖ξn‖2 + ‖ξn−1‖2 + (∆t)4),

R14 ≤ ε‖∇∂tξn+1‖2 +K(‖ηn+1‖2 + ‖ξn‖2 + ‖ξn−1‖2 + (∆t)4),

R15 ≤ ε‖∂tξn+1‖2 +K(‖ηn+1‖2 + ‖ξn‖2 + ‖ξn−1‖2 + (∆t)4).

Notice that by Taylor expansion

c(un+1)
3
2u

n+1 − 2un + 1
2u

n−1

∆t
− ψ(un+1)

∂un+1

∂ν
≈ O((∆t)2),

3
2u

n+1 − 2un + 1
2u

n−1

∆t
− un+1

t ≈ O((∆t)2).

Therefore, we get

R16 ≤ ε‖∂tξn+1‖2 +K(∆t)4,

R17 ≤ ε‖∇∂tξn+1‖2 +K(∆t)4.
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Now, using the estimates for R1 ∼ R17, we obtain from (4.16)

c∗‖∂tξn+1‖2 + b∗‖∇∂tξn+1‖2

+
1

4
(‖
√
c(Eunh)∂tξ

n+1‖2 − ‖
√
c(Eun−1

h )∂tξ
n‖2)

+
1

2∆t
(‖
√
a(Eunh)∇ξn+1‖2 − ‖

√
a(Eun−1

h )∇ξn‖2)

+
1

4
(‖
√
b(Eunh)∇∂tξn+1‖2 − ‖

√
b(Eun−1

h )∇∂tξn‖2)

≤ K[‖ξn‖2 + ‖ξn−1‖2 + ‖∇ξn‖2 + ‖∇ξn−1‖2]

+K∆t[‖∂tξn‖2 + ‖∇∂tξn‖2] + 7ε‖∇∂tξn+1‖2 + 8ε‖∂tξn+1‖2

+K[‖ηn‖2 + ‖ηn+1‖2 + ‖∂tηn‖2 + ‖∂tηn+1‖2 + (∆t)4]

(4.17)

Hence, by using Poincare’s inequality and Lemma 3.1, (4.18) can be estimated
as follows:

α‖∂tξn+1‖2 + β‖∇∂tξn+1‖2

+
1

4
(‖
√
c(Eunh)∂tξ

n+1‖2 − ‖
√
c(Eun−1

h )∂tξ
n‖2)

+
1

2∆t
(‖
√
a(Eunh)∇ξn+1‖2 − ‖

√
a(Eun−1

h )∇ξn‖2)

+
1

4
(‖
√
b(Eunh)∇∂tξn+1‖2 − ‖

√
b(Eun−1

h )∇∂tξn‖2)

≤ K[‖∇ξn‖2 + ‖∇ξn−1‖2 + ∆t(‖∂tξn‖2 + ‖∇∂tξn‖2) + h2µ + (∆t)4].

(4.18)

for sufficiently small ε. Now, we add both sides of (4.19) from n = 1 to l− 1 to
get

∆t

l−1∑
n=1

[α‖∂tξn+1‖2 + β‖∇∂tξn+1‖2] + ‖
√
a(Eul−1

h )∇ξl‖2

+ ∆t[‖
√
c(Eul−1

h )∂tξ
l‖2 + ‖

√
b(Eul−1

h )∇∂tξl‖2]

≤K∆t

l−1∑
n=1

[‖∇ξn‖2 + ‖∇ξn−1‖2 + ∆t(‖∂tξn‖2 + ‖∇∂tξn‖2) + h2µ + (∆t)4],

which yields

‖∇ξl‖2 + ∆t{‖∂tξl‖2 + ‖∇∂tξl‖2}

≤K
[
∆t

l−1∑
n=1

{‖∇ξn‖2 + ∆t(‖∂tξn‖2 + ‖∇∂tξn‖2)}+K∆t

l−1∑
n=1

{h2µ + (∆t)4}
]
,

for sufficiently small ∆t. Using Gronwall’s inequality, we get

‖∇ξl‖2 + ∆t{‖∂tξl‖2 + ‖∇∂tξl‖2} ≤ K[h2µ + (∆t)4],
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and so, we complete the proof of the statement (4.8). Using the Poincare’s
inequality and the triangle inequality, it can be easily proved that ‖ul − ulh‖ ≤
K(hµ + (∆t)2) and ‖∇(ul − ulh)‖ ≤ K(hµ−1 + (∆t)2). Thus the result of this
theorem holds. �

Remark 4.1. The result of Theorem 4.2 is the same as one in [16, 19]. Even
though two techniques give us the same result, the backward three point tech-
nique is quite different from the Crank-Nicolson technique. Both techniques are
widely used to obtain higher order of convergence in the time direction or in the
characteristic direction. And an extrapolation technique can be used to avoid
the difficulties of solving a system of nonlinear equations.
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