홉의 주요 Phloroglucinol 및 Prenylated Flavonoid의 생물활성

Biological Activities of Phloroglucinols and Prenylated Flavonoids from Humuli Strobilus

  • Kim, Hyun Jung (College of Pharmacy and Natural Medicine Research Institute, Mokpo National University) ;
  • Yoon, Goo (College of Pharmacy and Natural Medicine Research Institute, Mokpo National University) ;
  • Cho, Young Chang (College of Pharmacy, Chonnam National University) ;
  • Lee, Ik-Soo (College of Pharmacy, Chonnam National University) ;
  • Kang, Bok Yun (College of Pharmacy, Chonnam National University)
  • 투고 : 2018.08.09
  • 심사 : 2018.09.12
  • 발행 : 2018.09.30

초록

Hop cones (Humuli Strobili) are the female inflorescences of hop plants (Humulus lupulus L.) belonging to the family Cannabaceae. They have been used as herbal remedies to treat mood and sleep disturbances, and mainly to add as a bittering ingredient in brewing process. Considerable interests on pharmacological and biological activities of hop cones have been focused on their major constituents, namely, phloroglucinols (humulone, lupulone), terpenes (myrcene, humulene), and prenylated flavonoids (xanthohumol, isoxanthohumol, 6-prenylnaringenin, and 8-prenylnaringenin). The present review describes and discusses biological activity profiles of these major compounds in the hop cones.

키워드

참고문헌

  1. Bae, K. H. (2000) The medicinal plants of Korea, 71. Kyo-Hak Publishing Co. Ltd., Seoul.
  2. Van Wyk, B. E. and Wink, M. (2004) Medicinal plants of the world, 172. Timber Press, London.
  3. 식품의약품안전평가원 (2013) 한약재관능검사해설서, 716. 행정간행물등록번호 11-1470550-000343-01.
  4. Heinrich, M., Barnes, J., Gibbons, S. and Williamson, E. M. (2012) Fundamentals of pharmacognosy and phytotherapy, 242. Elsevier, Amsterdam.
  5. 생약학교재편찬위원회 (2018) 생약학 개정2판, 466-469. 동명사, 서울.
  6. Van Cleemput, M., Cattoor, K., De Bosscher, K., Haegeman, G., De Keukeleire, D. and Heyerick, A. (2009) Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds. J. Nat. Prod. 72: 1220-1230. https://doi.org/10.1021/np800740m
  7. Stevens, J. F. and Page, J. E. (2004) Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochemistry 65: 1317-1330. https://doi.org/10.1016/j.phytochem.2004.04.025
  8. Zanoli, P. and Zavatti, M. (2008) Pharmacognostic and pharmacological profile of Humulus lupulus L. J. Ethnopharmacol. 116: 383-396. https://doi.org/10.1016/j.jep.2008.01.011
  9. Liu, M., Hansen, P. E., Wang, G., Qiu, L., Dong, J., Yin, H., Qian, Z., Yang, M. and Miao, J. (2015) Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus). Molecules 20: 754-779. https://doi.org/10.3390/molecules20010754
  10. Kac, J., Plazar, J., Mlinaric, A., Zegura, B., Lah, T. T. and Filipic, M. (2008) Antimutagenicity of hops (Humulus lupulus L.): bioassay-directed fractionation and isolation of xanthohumol. Phytomedicine 15: 216-220. https://doi.org/10.1016/j.phymed.2007.09.008
  11. Miranda, C. L., Yang, Y. H., Henderson, M. C., Stevens, J. F., Santana-Rios, G., Deinzer, M. L. and Buhler, D. R. (2000) Prenylflavonoids from hops inhibit the metabolic activation of the carcinogenic heterocyclic amine 2-amino-3-methylimidazo[ 4, 5-f]quinoline, mediated by cDNA-expressed human CYP1A2. Drug Metab. Dispos. 28: 1297-1302.
  12. Henderson, M. C., Miranda, C. L., Stevens, J. F., Deinzer, M. L. and Buhler, D. R. (2000) In vitro inhibition of human P450 enzymes by prenylated flavonoids from hops, Humulus lupulus. Xenobiotica 30: 235-251. https://doi.org/10.1080/004982500237631
  13. Dietz, B. M., Kang, Y. H., Liu, G., Eggler, A. L., Yao, P., Chadwick, L. R., Pauli, G. F., Farnsworth, N. R., Mesecar, A. D., Van Breemen, R. B. and Bolton, J. L. (2005) Xanthohumol isolated from Humulus lupulus inhibits menadione-induced DNA damage through induction of quinone reductase. Chem. Res. Toxicol. 18: 1296-1305. https://doi.org/10.1021/tx050058x
  14. Gallo, C., Dallaglio, K., Bassani, B., Rossi, T., Rossello, A., Noonan, D. M., D'Uva, G., Bruno, A. and Albini, A. (2016) Hop derived flavonoid xanthohumol inhibits endothelial cell functions via AMPK activation. Oncotarget 7: 59917-59931.
  15. Albini, A., Dell'Eva, R., Vene, R., Ferrari, N., Buhler, D. R. and Noonan, D. M. (2006) Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets. FASEB J. 20: 527-529. https://doi.org/10.1096/fj.05-5128fje
  16. Saito, K., Matsuo, Y., Imafuji, H., Okubo, T., Maeda, Y., Sato, T., Shamoto, T., Tsuboi, K., Morimoto, M., Takahashi, H., Ishiguro, H. and Takiguchi, S. (2018) Xanthohumol inhibits angiogenesis by suppressing nuclear factor-${\kappa}B$ activation in pancreatic cancer. Cancer Sci. 109: 132-140. https://doi.org/10.1111/cas.13441
  17. Negrao, R., Incio, J., Lopes, R., Azevedo, I. and Soares, R. (2007) Evidence for the effects of xanthohumol in disrupting angiogenic, but not stable vessels. Int. J. Biomed. Sci. 3: 279-286.
  18. Negrao, R., Duarte, D., Costa, R. and Soares, R. (2013) Isoxanthohumol modulates angiogenesis and inflammation via vascular endothelial growth factor receptor, tumor necrosis factor alpha and nuclear factor kappa B pathways. Biofactors 39: 608-622. https://doi.org/10.1002/biof.1122
  19. Siegel, L., Miternique-Grosse, A., Griffon, C., Klein-Soyer, C., Lobstein, A., Raul, F. and Stephan, D. (2008) Antiangiogenic properties of lupulone, a bitter acid of hop cones. Anticancer Res. 28: 289-294.
  20. Serwe, A., Rudolph, K., Anke, T. and Erkel, G. (2012) Inhibition of TGF-${\beta}$ signaling, vasculogenic mimicry and proinflammatory gene expression by isoxanthohumol. Invest. New Drugs 30: 898-915. https://doi.org/10.1007/s10637-011-9643-3
  21. Shimamura, M., Hazato, T., Ashino, H., Yamamoto, Y., Iwasaki, E., Tobe, H., Yamamoto, K. and Yamamoto, S. (2001) Inhibition of angiogenesis by humulone, a bitter acid from beer hop. Biochem. Biophys. Res. Commun. 289: 220-224. https://doi.org/10.1006/bbrc.2001.5934
  22. Vanhoecke, B., Derycke, L., Van Marck, V., Depypere, H., De Keukeleire, D. and Bracke, M. (2005) Antiinvasive effect of xanthohumol, a prenylated chalcone present in hops (Humulus lupulus L.) and beer. Int. J. Cancer 117: 889-895. https://doi.org/10.1002/ijc.21249
  23. Jongthawin, J., Techasen, A., Loilome, W., Yongvanit, P. and Namwat, N. (2012) Anti-inflammatory agents suppress the prostaglandin E2 production and migration ability of cholangiocarcinoma cell lines. Asian Pac. J. Cancer Prev. 13: 47-51.
  24. Wang, Y., Chen, Y., Wang, J., Chen, J., Aggarwal, B. B., Pang, X. and Liu, M. (2012) Xanthohumol, a prenylated chalcone derived from hops, suppresses cancer cell invasion through inhibiting the expression of CXCR4 chemokine receptor. Curr. Mol. Med. 12: 153-162. https://doi.org/10.2174/156652412798889072
  25. Krajnovic, T., Kaluderovic, G. N., Wessjohann, L. A., Mijatovic, S. and Maksimovic-Ivanic, D. (2016) Versatile antitumor potential of isoxanthohumol: enhancement of paclitaxel activity in vivo. Pharmacol. Res. 105: 62-73. https://doi.org/10.1016/j.phrs.2016.01.011
  26. Miranda, C. L., Stevens, J. F., Helmrich, A., Henderson, M. C., Rodriguez, R. J. and Yang, Y. H. (1999) Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem. Toxicol. 37: 271-285. https://doi.org/10.1016/S0278-6915(99)00019-8
  27. Yong, W. K., Ho, Y. F. and Malek, S. N. (2015) Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 nonsmall cell lung cancer cells. Pharmacogn. Mag. 11: S275-S283. https://doi.org/10.4103/0973-1296.166069
  28. Yong, W. K. and Abd Malek, S. N. (2015) Xanthohumol induces growth inhibition and apoptosis in ca ski human cervical cancer cells. Evid. Based Complement. Alternat. Med. 921306.
  29. Zhao, X., Jiang, K., Liang, B. and Huang, X. (2016) Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-${\kappa}B$/p53-apoptosis signaling pathway. Oncol. Rep. 35: 669-675. https://doi.org/10.3892/or.2015.4455
  30. Sun, Z., Zhou, C., Liu, F., Zhang, W., Chen, J., Pan, Y., Ma, L., Liu, Q., Du, Y., Yang, J. and Wang, Q. (2018) Inhibition of breast cancer cell survival by xanthohumol via modulation of the Notch signaling pathway in vivo and in vitro. Oncol. Lett. 15: 908-916.
  31. Zhang, B., Chu, W., Wei, P., Liu, Y. and Wei, T. (2015) Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I. Free Radic. Biol. Med. 89: 486-497. https://doi.org/10.1016/j.freeradbiomed.2015.09.021
  32. Lust, S., Vanhoecke, B., Van Gele, M., Boelens, J., Van Melckebeke, H., Kaileh, M., Vanden Berghe, W., Haegeman, G., Philippe, J., Bracke, M. and Offner, F. (2009) Xanthohumol activates the proapoptotic arm of the unfolded protein response in chronic lymphocytic leukemia. Anticancer Res. 29: 3797-3805.
  33. Mi, X., Wang, C., Sun, C., Chen, X., Huo, X., Zhang, Y., Li, G., Xu, B., Zhang, J., Xie, J., Wang, Z. and Li, J. (2017) Xanthohumol induces paraptosis of leukemia cells through p38 mitogen activated protein kinase signaling pathway. Oncotarget 8: 31297-31304.
  34. Shikata, Y., Yoshimaru, T., Komatsu, M., Katoh, H., Sato, R., Kanagaki, S., Okazaki, Y., Toyokuni, S., Tashiro, E., Ishikawa, S., Katagiri, T. and Imoto, M. (2017) Protein kinase A inhibition facilitates the antitumor activity of xanthohumol, a valosin-containing protein inhibitor. Cancer Sci. 108: 785-794. https://doi.org/10.1111/cas.13175
  35. Lee, S. H., Kim, H. J., Lee, J. S., Lee, I. S. and Kang, B. Y. (2007) Inhibition of topoisomerase I activity and efflux drug transporters' expression by xanthohumol from hops. Arch. Pharm. Res. 30: 1435-1439. https://doi.org/10.1007/BF02977368
  36. Gasiorowska, J., Teisseyre, A., Uryga, A. and Michalak, K. (2015) Inhibition of Kv1.3 channels in human Jurkat T cells by xanthohumol and isoxanthohumol. J. Membr. Biol. 248: 705-711. https://doi.org/10.1007/s00232-015-9782-0
  37. Delmulle, L., Bellahcene, A., Dhooge, W., Comhaire, F., Roelens, F., Huvaere, K,, Heyerick, A., Castronovo, V. and De Keukeleire, D. (2006) Anti-proliferative properties of prenylated flavonoids from hops (Humulus lupulus L.) in human prostate cancer cell lines. Phytomedicine 13: 732-734. https://doi.org/10.1016/j.phymed.2006.01.001
  38. Busch, C., Noor, S., Leischner, C., Burkard, M., Lauer, U.M. and Venturelli, S. (2015) Anti-proliferative activity of hopderived prenylflavonoids against human cancer cell lines. Wien. Med. Wochenschr. 165: 258-261. https://doi.org/10.1007/s10354-015-0355-8
  39. Ambroz, M., Bousova, I., Skarka, A., Hanusova, V., Kralova, V., Matouskova, P., Szotakova, B. and Skalova, L. (2015) The influence of sesquiterpenes from Myrica rubra on the antiproliferative and pro-oxidative effects of doxorubicin and its accumulation in cancer cells. Molecules 20: 15343-15358. https://doi.org/10.3390/molecules200815343
  40. Honma, Y., Tobe, H., Makishima, M., Yokoyama, A. and Okabe-Kado, J. (1998) Induction of differentiation of myelogenous leukemia cells by humulone, a bitter in the hop. Leuk. Res. 22: 605-610. https://doi.org/10.1016/S0145-2126(98)00046-0
  41. Tobe, H., Kubota, M., Yamaguchi, M., Kocha, T. and Aoyagi, T. (1997) Apoptosis to HL-60 by humulone. Biosci. Biotechnol. Biochem. 61: 1027-1029. https://doi.org/10.1271/bbb.61.1027
  42. Lee, J. C., Kundu, J. K., Hwang, D. M., Na, H. K. and Surh, Y. J. (2007) Humulone inhibits phorbol ester-induced COX-2 expression in mouse skin by blocking activation of NF-kappaB and AP-1: IkappaB kinase and c-Jun-N-terminal kinase as respective potential upstream targets. Carcinogenesis 28: 1491-1498. https://doi.org/10.1093/carcin/bgm054
  43. Lamy, V., Roussi, S., Chaabi, M., Gosse, F., Schall, N., Lobstein, A. and Raul, F. (2007) Chemopreventive effects of lupulone, a hop ${\beta}$-acid, on human colon cancer-derived metastatic SW620 cells and in a rat model of colon carcinogenesis. Carcinogenesis 28: 1575-1581. https://doi.org/10.1093/carcin/bgm080
  44. Lamy, V., Roussi, S., Chaabi, M., Gosse, F., Lobstein, A. and Raul, F. (2008) Lupulone, a hop bitter acid, activates different death pathways involving apoptotic TRAIL-receptors, in human colon tumor cells and in their derived metastatic cells. Apoptosis 13: 1232-1242. https://doi.org/10.1007/s10495-008-0250-5
  45. Lamy, V., Bousserouel, S., Gosse, F., Minker, C., Lobstein, A. and Raul, F. (2010) p53 Activates either survival or apoptotic signaling responses in lupulone-treated human colon adenocarcinoma cells and derived metastatic cells. Transl. Oncol. 3: 286-292. https://doi.org/10.1593/tlo.10124
  46. Lamy, V., Bousserouel, S., Gosse, F., Minker, C., Lobstein, A. and Raul, F. (2011) Lupulone triggers p38 MAPK-controlled activation of p53 and of the TRAIL receptor apoptotic pathway in human colon cancer-derived metastatic cells. Oncol. Rep. 26: 109-114.
  47. Bousserouel, S., Lamy, V., Gosse, F., Lobstein, A., Marescaux, J. and Raul, F. (2011) Early modulation of gene expression used as a biomarker for chemoprevention in a preclinical model of colon carcinogenesis. Pathol. Int. 61: 80-87. https://doi.org/10.1111/j.1440-1827.2010.02621.x
  48. Tan, K. W., Cooney, J., Jensen, D., Li, Y., Paxton, J. W., Birch, N. P. and Scheepens, A. (2014) Hop-derived prenylflavonoids are substrates and inhibitors of the efflux transporter breast cancer resistance protein (BCRP/ABCG2). Mol. Nutr. Food. Res. 58: 2099-2110. https://doi.org/10.1002/mnfr.201400288
  49. Aderem, A. and Underhill, D. M. (1999) Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17: 593-623. https://doi.org/10.1146/annurev.immunol.17.1.593
  50. Aderem, A. and Ulevitch, R. J. (2000) Toll-like receptors in the induction of the innate immune response. Nature 406: 782-787. https://doi.org/10.1038/35021228
  51. Schroder, K., Hertzog, P. J., Ravasi, T. and Hume, D. A. (2004) Interferon-${\gamma}$: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75: 163-189. https://doi.org/10.1189/jlb.0603252
  52. Boehm, U., Klamp, T., Groot, M. and Howard, J. C. (1997) Cellular responses to interferon-gamma. Annu. Rev. Immunol. 15: 749-795. https://doi.org/10.1146/annurev.immunol.15.1.749
  53. Cho, Y. C., Kim, H. J., Kim, Y. J., Lee, K. Y., Choi, H. J., Lee, I. S. and Kang, B. Y. (2008) Differential anti-inflammatory pathway by xanthohumol in IFN-gamma and LPSactivated macrophages. Int. Immunopharmacol. 8: 567-573. https://doi.org/10.1016/j.intimp.2007.12.017
  54. Cho, Y. C., You, S. K., Kim, H. J., Cho, C. W., Lee, I. S. and Kang, B. Y. (2010) Xanthohumol inhibits IL-12 production and reduces chronic allergic contact dermatitis. Int. Immunopharmacol. 10: 556-561. https://doi.org/10.1016/j.intimp.2010.02.002
  55. Xuan, N. T., Shumilina, E., Gulbins, E., Gu, S., Gotz, F. and Lang, F. (2010) Triggering of dendritic cell apoptosis by xanthohumol. Mol. Nutr. Food Res. 54: S214-S224. https://doi.org/10.1002/mnfr.200900324
  56. Choi, J. M., Kim, H. J., Lee, K. Y., Choi, H. J., Lee, I. S. and Kang, B. Y. (2009) Increased IL-2 production in T cells by xanthohumol through enhanced NF-AT and AP-1 activity. Int. Immunopharmacol. 9: 103-107. https://doi.org/10.1016/j.intimp.2008.10.011
  57. Gao, X., Deeb, D., Liu, Y., Gautam, S., Dulchavsky, S. A. and Gautam, S. C. (2009) Immunomodulatory activity of xanthohumol: inhibition of T cell proliferation, cell-mediated cytotoxicity and Th1 cytokine production through suppression of NF-kappaB. Immunopharmacol. Immunotoxicol. 31: 477-484. https://doi.org/10.1080/08923970902798132
  58. Zhang, W., Pan, Y., Gou, P., Zhou, C., Ma, L., Liu, Q., Du, Y., Yang, J. and Wang, Q. (2018) Effect of xanthohumol on Th1/Th2 balance in a breast cancer mouse model. Oncol. Rep. 39: 280-288.
  59. Cho, J. M., Yun, S. M., Choi, Y. H., Heo, J., Kim, N. J., Kim, S. H. and Kim, E. H. (2017) Xanthohumol prevents dextran sulfate sodium-induced colitis via inhibition of $IKK{\beta}$/NF-${\kappa}B$ signaling in mice. Oncotarget 9: 866-880.
  60. Dostalek, P., Karabin, M. and Jelinek, L. (2017) Hop phytochemicals and their potential role in metabolic syndrome prevention and therapy. Molecules 22: 1761. https://doi.org/10.3390/molecules22101761
  61. Miranda, C. L., Elias, V. D., Hay, J. J., Choi, J., Reed, R. L. and Stevens, J. F. (2016) Xanthohumol improves dysfunctional glucose and lipid metabolism in diet-induced obese C57BL/6J mice. Arch. Biochem. Biophys. 599: 22-30. https://doi.org/10.1016/j.abb.2016.03.008
  62. Kiyofuji, A., Yui, K., Takahashi, K. and Osada, K. (2014) Effects of xanthohumol-rich hop extract on the differentiation of preadipocytes. J. Oleo. Sci. 63: 593-597. https://doi.org/10.5650/jos.ess14009
  63. Doddapattar, P., Radovic, B., Patankar, J. V., Obrowsky, S., Jandl, K., Nusshold, C., Kolb, D., Vujic, N., Doshi, L., Chandak, P. G., Goeritzer, M., Ahammer, H., Hoefler, G., Sattler, W. and Kratky, D. (2013) Xanthohumol ameliorates atherosclerotic plaque formation, hypercholesterolemia, and hepatic steatosis in ApoE-deficient mice. Mol. Nutr. Food Res. 57: 1718-1728.
  64. Hirata, H., Yimin, Segawa, S., Ozaki, M., Kobayashi, N., Shigyo, T. and Chiba, H. (2012) Xanthohumol prevents atherosclerosis by reducing arterial cholesterol content via CETP and apolipoprotein E in CETP-transgenic mice. PLoS One 7: e49415. https://doi.org/10.1371/journal.pone.0049415
  65. Miranda, C. L., Johnson, L. A., de Montgolfier, O., Elias, V. D., Ullrich, L. S., Hay, J. J., Paraiso, I. L., Choi, J., Reed, R. L., Revel, J. S., Kioussi, C., Bobe, G., Iwaniec, U. T., Turner, R. T., Katzenellenbogen, B. S., Katzenellenbogen, J. A., Blakemore, P. R., Gombart, A. F., Maier, C. S., Raber, J. and Stevens, J. F. (2018) Non-estrogenic xanthohumol derivatives mitigate insulin resistance and cognitive impairment in highfat diet-induced obese mice. Sci. Rep. 8: 613. https://doi.org/10.1038/s41598-017-18992-6
  66. Miyata, S., Inoue, J., Shimizu, M. and Sato, R. (2015) Xanthohumol improves diet-induced obesity and fatty liver by suppressing sterol regulatory element-binding protein (SREBP) activation. J. Biol. Chem. 290: 20565-20579. https://doi.org/10.1074/jbc.M115.656975
  67. Inoue, J., Miyata, S., Shimizu, M. and Sato, R. (2018) Isoxanthohumol stimulates ubiquitin-proteasome-dependent degradation of precursor forms of sterol regulatory elementbinding proteins. Biosci. Biotechnol. Biochem. 26: 1-8.
  68. Lima-Fontes, M., Costa, R., Rodrigues, I. and Soares, R. (2017) Xanthohumol restores hepatic glucolipid metabolism balance in Type 1 diabetic Wistar rats. J. Agric. Food Chem. 65: 7433-7439. https://doi.org/10.1021/acs.jafc.7b02595
  69. Costa, R., Rodrigues, I., Guardao, L., Rocha-Rodrigues, S., Silva, C., Magalhaes, J., Ferreira-de-Almeida, M., Negrao, R. and Soares, R. (2017) Xanthohumol and 8-prenylnaringenin ameliorate diabetic-related metabolic dysfunctions in mice. J. Nutr. Biochem. 45: 39-47. https://doi.org/10.1016/j.jnutbio.2017.03.006
  70. Seliger, J. M, Misuri, L., Maser, E. and Hintzpeter, J. (2018) The hop-derived compounds xanthohumol, isoxanthohumol and 8-prenylnaringenin are tight-binding inhibitors of human aldo-keto reductases 1B1 and 1B10. J. Enzyme Inhib. Med. Chem. 33: 607-614. https://doi.org/10.1080/14756366.2018.1437728
  71. Dorn, C., Kraus, B., Motyl, M., Weiss, T.S., Gehrig, M., Scholmerich, J., Heilmann, J. and Hellerbrand, C. (2010) Xanthohumol, a chalcon derived from hops, inhibits hepatic inflammation and fibrosis. Mol. Nutr. Food Res. 54: S205-S213. https://doi.org/10.1002/mnfr.200900314
  72. Weiskirchen, R., Mahli, A., Weiskirchen, S. and Hellerbrand, C. (2015) The hop constituent xanthohumol exhibits hepatoprotective effects and inhibits the activation of hepatic stellate cells at different levels. Front. Physiol. 6: 140.
  73. Lou, S., Zheng, Y. M., Liu, S.L., Qiu, J., Han, Q., Li, N., Zhu, Q., Zhang, P., Yang, C. and Liu, Z. (2014) Inhibition of hepatitis C virus replication in vitro by xanthohumol, a natural product present in hops. Planta Med. 80: 171-176.
  74. Philips, N., Samuel, M., Arena, R., Chen, Y. J., Conte, J., Natarajan, P., Haas, G. and Gonzalez, S. (2010) Direct inhibition of elastase and matrixmetalloproteinases and stimulation of biosynthesis of fibrillar collagens, elastin, and fibrillins by xanthohumol. J. Cosmet. Sci. 61: 125-132.
  75. Suh, K. S., Chon, S. and Choi, E. M. (2018) Cytoprotective effects of xanthohumol against methylglyoxal-induced cytotoxicity in MC3T3-E1 osteoblastic cells. J. Appl. Toxicol. 38: 180-192. https://doi.org/10.1002/jat.3521
  76. Fernandez-Garcia, C., Rancan, L., Paredes, S. D., Montero, C., de la Fuente, M., Vara, E. and Tresguerres, J. A. F. (2018) Xanthohumol exerts protective effects in liver alterations associated with aging. Eur. J. Nutr. doi: 10.1007/s00394-018-1657-6.
  77. Rancan, L., Paredes, S. D., Garcia, I., Munoz, P., Garcia, C., Lopez de Hontanar G., de la Fuente, M., Vara, E. and Tresguerres, J. A. F. (2017) Protective effect of xanthohumol against age-related brain damage. J. Nutr. Biochem. 49: 133-140. https://doi.org/10.1016/j.jnutbio.2017.07.011
  78. Lee, I. S., Lim, J., Gal, J., Kang, J. C., Kim, H. J., Kang, B. Y. and Choi, H. J. (2011) Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells. Neurochem. Int. 58: 153-160. https://doi.org/10.1016/j.neuint.2010.11.008
  79. Orhan, I. E., Jedrejek, D., Senol, F. S., Salmas, R. E., Durdagi, S., Kowalska, I., Pecio, L. and Oleszek, W. (2018) Molecular modeling and in vitro approaches towards cholinesterase inhibitory effect of some natural xanthohumol, naringenin, and acyl phloroglucinol derivatives. Phytomedicine 42: 25-33. https://doi.org/10.1016/j.phymed.2018.03.009
  80. Bogdanova, K., Roderova, M., Kolar, M., Langova, K., Dusek, M., Jost, P., Kubelkova, K., Bostik, P. and Olsovska, J. (2018) Antibiofilm activity of bioactive hop compounds humulone, lupulone and xanthohumol toward susceptible and resistant Staphylococci. Res. Microbiol. 169: 127-134. https://doi.org/10.1016/j.resmic.2017.12.005
  81. Cermak, P., Olsovska, J., Mikyska, A., Dusek, M., Kadleckova, Z., Vanicek, J., Nyc, O., Sigler, K., Bostikova, V. and Bostik, P. (2017) Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria. APMIS 125: 1033-1038. https://doi.org/10.1111/apm.12747
  82. Siragusa, G. R., Haas, G. J., Matthews, P. D., Smith, R. J., Buhr, R. J., Dale, N. M. and Wise, M. G. (2008) Antimicrobial activity of lupulone against Clostridium perfringens in the chicken intestinal tract jejunum and caecum. J. Antimicrob. Chemother. 61: 853-858. https://doi.org/10.1093/jac/dkn024
  83. Zolnierczyk, A. K., Maczka, W. K., Grabarczyk, M., Winska, K., Wozniak, E. and Aniol, M. (2015) Isoxanthohumol-biologically active hop flavonoid. Fitoterapia 103: 71-82. https://doi.org/10.1016/j.fitote.2015.03.007
  84. Fuchimoto, J., Kojima, T., Okabayashi, T., Masaki, T., Ogasawara, N., Obata, K., Nomura, K., Hirakawa, S., Kobayashi, N., Shigyo, T., Yokota, S., Fujii, N., Tsutsumi, H., Himi, T. and Sawada, N. (2013) Humulone suppresses replication of respiratory syncytial virus and release of IL-8 and RANTES in normal human nasal epithelial cells. Med. Mol. Morphol. 46: 203-209. https://doi.org/10.1007/s00795-013-0024-1
  85. Sandoval-Ramirez, B. A., M Lamuela-Raventos, R., Estruch, R., Sasot, G., Domenech, M. and Tresserra-Rimbau, A. (2017) Beer polyphenols and menopause: effects and mechanisms-a review of current knowledge. Oxid. Med. Cell Longev. 4749131.
  86. Abdi, F., Mobedi, H. and Roozbeh, N. (2016) Hops for menopausal vasomotor symptoms: mechanisms of action. J. Menopausal Med. 22: 62-64. https://doi.org/10.6118/jmm.2016.22.2.62
  87. Milligan, S. R., Kalita, J. C., Pocock, V., Van De Kauter, V., Stevens, J. F., Deinzer, M. L., Rong, H. and De Keukeleire, D. (2000) The endocrine activities of 8-prenylnaringenin and related hop (Humulus lupulus L.) flavonoids. J. Clin. Endocrinol. Metab. 85: 4912-4915. https://doi.org/10.1210/jcem.85.12.7168
  88. Effenberger, K. E., Johnsen, S. A., Monroe, D. G., Spelsberg, T. C. and Westendorf, J. J. (2005) Regulation of osteoblastic phenotype and gene expression by hop-derived phytoestrogens. J. Steroid Biochem. Mol. Biol. 96: 387-399. https://doi.org/10.1016/j.jsbmb.2005.04.038
  89. Ming, L. G., Lv, X., Ma, X. N., Ge, B. F., Zhen, P., Song, P., Zhou, J., Ma, H. P., Xian, C. J. and Chen, K. M. (2013) The prenyl group contributes to activities of phytoestrogen 8-prenynaringenin in enhancing bone formation and inhibiting bone resorption in vitro. Endocrinology 154: 1202-1214. https://doi.org/10.1210/en.2012-2086
  90. Lu, X., Zhou, Y., Chen, K. M., Zhao, Z., Zhou, J. and Ma, X. N. (2013) Inhibitory effect of 8-prenylnaringenin on osteoclastogensis of bone marrow cells and bone resorption activity. Yao Xue Xue Bao 48: 347-351.
  91. Lv, X., Chen, K. M., Ge, B. F., Ma, H. P., Song, P. and Cheng, K. (2013) Comparative study on effect of 8-prenlynaringenin and narigenin on activity of osteoclasts cultured in vitro. Zhongguo Zhong Yao Za Zhi 38: 1992-1996.
  92. Luo, D., Kang, L., Ma, Y., Chen, H., Kuang, H., Huang, Q., He, M. and Peng, W. (2014) Effects and mechanisms of 8-prenylnaringenin on osteoblast MC3T3-E1 and osteoclastlike cells RAW264.7. Food Sci. Nutr. 2: 341-350. https://doi.org/10.1002/fsn3.109
  93. Stompor, M. Uram, L. and Podgorski, R. (2017) In vitro effect of 8-prenylnaringenin and naringenin on fibroblasts and glioblastoma cells-cellular accumulation and cytotoxicity. Molecules 22: 1092. https://doi.org/10.3390/molecules22071092
  94. Brunelli, E., Minassi, A., Appendino, G. and Moro, L. (2007) 8-Prenylnaringenin, inhibits estrogen receptor-alpha mediated cell growth and induces apoptosis in MCF-7 breast cancer cells. J. Steroid Biochem. Mol. Biol. 107: 140-148. https://doi.org/10.1016/j.jsbmb.2007.04.003
  95. Hemachandra, L., Madhubhani, P., Chandrasena, R., Esala, P., Chen, S. N., Main, M., Lankin, D. C., Scism, R. A., Dietz, B. M. and Pauli, G. F. (2012) Hops (Humulus lupulus) inhibits oxidative estrogen metabolism and estrogen-induced malignant transformation in human mammary epithelial cells (MCF-10A). Cancer Prev. Res. 5: 73-81. https://doi.org/10.1158/1940-6207.CAPR-11-0348
  96. Pepper, M. S., Hazel, S. J., Humpel, M. and Schleuning, W.D. (2004) 8-prenylnaringenin, a novel phytoestrogen, inhibits angiogenesis in vitro and in vivo. J. Cell Physiol. 199: 98-107. https://doi.org/10.1002/jcp.10460
  97. Rong, H., Boterberg, T., Maubach, J., Stove, C., Depypere, H., Van Slambrouck, S., Serreyn, R., De Keukeleire, D., Mareel, M. and Bracke, M. (2001) 8-Prenylnaringenin, the phytoestrogen in hops and beer, upregulates the function of the E-cadherin/catenin complex in human mammary carcinoma cells. Eur. J. Cell Biol. 80: 580-585. https://doi.org/10.1078/0171-9335-00190
  98. Di Vito, C., Bertoni, A., Nalin, M., Sampietro, S., Zanfa, M. and Sinigaglia, F. (2012) The phytoestrogen 8-prenylnaringenin inhibits agonist-dependent activation of human platelets. Biochim. Biophys. Acta 1820: 1724-1733. https://doi.org/10.1016/j.bbagen.2012.06.018
  99. Mukai, R., Horikawa, H., Lin, P. Y., Tsukumo, N., Nikawa, T., Kawamura, T., Nemoto, H. and Terao, J. (2016) 8-Prenylnaringenin promotes recovery from immobilization-induced disuse muscle atrophy through activation of the Akt phosphorylation pathway in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 311: R1022-R1031. https://doi.org/10.1152/ajpregu.00521.2015
  100. Urmann, C., Oberbauer, E., Couillard-Despres, S., Aigner, L. and Riepl, H. (2015) Neurodifferentiating potential of 8-prenylnaringenin and related compounds in neural precursor cells and correlation with estrogen-like activity. Planta Med. 81: 305-311. https://doi.org/10.1055/s-0034-1396243
  101. Franco, L., Sanchez, C., Bravo, R., Rodriguez, A., Barriga, C. and Juanez, J. C. (2012) The sedative effects of hops (Humulus lupulus), a component of beer, on the activity/rest rhythm. Acta Physiol. Hung. 99: 133-139. https://doi.org/10.1556/APhysiol.99.2012.2.6
  102. Sekiguchi, F., Fujita, T., Deguchi, T., Yamaoka, S., Tomochika, K., Tsubota, M., Ono, S., Horaguchi, Y., Ichii, M., Ichikawa, M., Ueno, Y., Koike, N., Tanino, T., Nguyen, H.D., Okada, T., Nishikawa, H., Yoshida, S., Ohkubo, T., Toyooka, N., Murata, K., Matsuda, H. and Kawabata, A. (2018) Blockade of T-type calcium channels by 6-prenylnaringenin, a hop component, alleviates neuropathic and visceral pain in mice. Neuropharmacology 138: 232-244. https://doi.org/10.1016/j.neuropharm.2018.06.020
  103. Bruneton, J. (1999) Pharmacognosy, phytochemistry, medicinal plants, 455-456, Lavoisier Publishing, Paris.
  104. Stevens, J. F., Ivancic, M., Hsu, V. L. and Deinzer, M. L. (1997) Prenylflavonoids from Humulus lupulus. Phytochemistry 44: 1575-1585. https://doi.org/10.1016/S0031-9422(96)00744-3
  105. Stevens, J. F., Taylor, A. W. and Deinzer, M. L. (1999) Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 832: 97-107. https://doi.org/10.1016/S0021-9673(98)01001-2