과제정보
연구 과제 주관 기관 : China Postdoctoral Science Foundation
참고문헌
- K. Asano, On local solutions of the initial value problem for the Vlasov-Maxwell equation, Comm. Math. Phys. 106 (1986), no. 4, 551-568. https://doi.org/10.1007/BF01463395
- C. Bardos and P. Degond, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, Ann. Inst. H. Poincare Anal. Non Lineaire 2 (1985), no. 2, 101-118. https://doi.org/10.1016/S0294-1449(16)30405-X
- J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differential Equations 25 (1977), no. 3, 342-364. https://doi.org/10.1016/0022-0396(77)90049-3
- S. Bauer and M. Kunze, The Darwin approximation of the relativistic Vlasov-Maxwell system, Ann. Henri Poincare 6 (2005), no. 2, 283-308. https://doi.org/10.1007/s00023-005-0207-y
-
S. Benachour, F. Filbet, P. Laurencot, and E. Sonnendrucker, Global existence for the Vlasov-Darwin system in
${\mathbb{R}}^3$ for small initial data, Math. Methods Appl. Sci. 26 (2003), no. 4, 297-319. https://doi.org/10.1002/mma.355 - P. Degond and P.-A. Raviart, An analysis of the Darwin model of approximation to Maxwell's equations, Forum Math. 4 (1992), no. 1, 13-44.
- R. J. DiPerna and P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math. 42 (1989), no. 6, 729-757. https://doi.org/10.1002/cpa.3160420603
- D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
- R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.
- R. T. Glassey and J. W. Schaeffer, Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data, Comm. Math. Phys. 119 (1988), no. 3, 353-384. https://doi.org/10.1007/BF01218078
- R. T. Glassey and J. W. Schaeffer, On the "one and one-half dimensional" relativistic Vlasov-Maxwell system, Math. Methods Appl. Sci. 13 (1990), no. 2, 169-179. https://doi.org/10.1002/mma.1670130207
- R. T. Glassey and J. W. Schaeffer, The "two and one-half-dimensional" relativistic Vlasov Maxwell system, Comm. Math. Phys. 185 (1997), no. 2, 257-284. https://doi.org/10.1007/s002200050090
- R. T. Glassey and J. W. Schaeffer, The relativistic Vlasov-Maxwell system in two space dimensions. I, Arch. Rational Mech. Anal. 141 (1998), no. 4, 331-354. https://doi.org/10.1007/s002050050079
- R. T. Glassey and J. W. Schaeffer, The relativistic Vlasov-Maxwell system in two space dimensions. II, Arch. Rational Mech. Anal. 141 (1998), no. 4, 355-374. https://doi.org/10.1007/s002050050080
- R. T. Glassey and W. A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal. 92 (1986), no. 1, 59-90. https://doi.org/10.1007/BF00250732
- R. T. Glassey and W. A. Strauss, Absence of shocks in an initially dilute collisionless plasma, Comm. Math. Phys. 113 (1987), no. 2, 191-208. https://doi.org/10.1007/BF01223511
- F. Golse, Mean field kinetic equations, preprint, 2013.
- E. Horst, On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation. I. General theory, Math. Methods Appl. Sci. 3 (1981), no. 2, 229-248. https://doi.org/10.1002/mma.1670030117
- E. Horst, On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation. II. Special cases, Math. Methods Appl. Sci. 4 (1982), no. 1, 19-32. https://doi.org/10.1002/mma.1670040104
- E. Horst and R. Hunze, Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation, Math. Methods Appl. Sci. 6 (1984), no. 2, 262-279. https://doi.org/10.1002/mma.1670060118
- E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, RI, 1997.
- P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math. 105 (1991), no. 2, 415-430. https://doi.org/10.1007/BF01232273
- G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl. (9) 86 (2006), no. 1, 68-79. https://doi.org/10.1016/j.matpur.2006.01.005
- C. Pallard, The initial value problem for the relativistic Vlasov-Darwin system, Int. Math. Res. Not. 2006 (2006), Art. ID 57191, 31 pp.
- K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Equations 95 (1992), no. 2, 281-303. https://doi.org/10.1016/0022-0396(92)90033-J
- G. Rein, Collisionless kinetic equations from astrophysics-the Vlasov-Poisson system, in Handbook of differential equations: evolutionary equations. Vol. III, 383-476, Handb. Differ. Equ, Elsevier/North-Holland, Amsterdam, 2007.
- J. Schaeffer, Asymptotic growth bounds for the Vlasov-Poisson system, Math. Methods Appl. Sci. 34 (2011), no. 3, 262-277. https://doi.org/10.1002/mma.1354
- J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Comm. Partial Differential Equations 16 (1991), no. 8-9, 1313-1335. https://doi.org/10.1080/03605309108820801
- J. Schaeffer, The classical limit of the relativistic Vlasov-Maxwell system, Comm. Math. Phys. 104 (1986), no. 3, 403-421. https://doi.org/10.1007/BF01210948
- M. Seehafer, Global classical solutions of the Vlasov-Darwin system for small initial data, Commun. Math. Sci. 6 (2008), no. 3, 749-764. https://doi.org/10.4310/CMS.2008.v6.n3.a11
- R. Sospedra-Alfonso and M. Agueh, Uniqueness of the compactly supported weak solutions of the relativistic Vlasov-Darwin system, Acta Appl. Math. 124 (2013), 207-227. https://doi.org/10.1007/s10440-012-9776-1
- R. Sospedra-Alfonso, M. Agueh, and R. Illner, Global classical solutions of the relativistic Vlasov-Darwin system with small Cauchy data: the generalized variables approach, Arch. Ration. Mech. Anal. 205 (2012), no. 3, 827-869. https://doi.org/10.1007/s00205-012-0518-3
- S. Wollman, An existence and uniqueness theorem for the Vlasov-Maxwell system, Comm. Pure Appl. Math. 37 (1984), no. 4, 457-462. https://doi.org/10.1002/cpa.3160370404