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ON CLASSICAL SOLUTIONS AND THE CLASSICAL LIMIT

OF THE VLASOV-DARWIN SYSTEM

Xiuting Li and Jiamu Sun

Abstract. In this paper we study the initial value problem of the non-

relativistic Vlasov-Darwin system with generalized variables (VDG). We
first prove local existence and uniqueness of a nonnegative classical solu-

tion to VDG in three space variables, and establish the blow-up criterion.
Then we show that it converges to the well-known Vlasov-Poisson system

when the light velocity c tends to infinity in a pointwise sense.

1. Introduction

In this paper, we consider the collisionless single particle interacting by the
electromagnetic field, more precisely, the non-relativistic Vlasov-Darwin system
(VDS) in [17]. Let the function f = f(t, x, v) denote phase space density of
particles, in which t ∈ R, x ∈ R3 and v ∈ R3 stand for time, position and
velocity respectively, then the system reads as:

∂tf + v · ∇xf +
q

m
(EL + ET + v ×B) · ∇vf = 0,(1.1)

∇×B − 1

c2
∂tEL = µ0qjf , ∇ ·B = 0,(1.2)

∇× ET + ∂tB = 0, ∇ · EL =
qρf
ε0

,(1.3)

where q and m are electric charge and mass of particles in the plasma re-
spectively, the constants µ0 and ε0 are the vacuum permittivity and mag-
netic permeability respectively, while c = 1√

µ0ε0
is the light speed in vacuum.

The macroscopic density and current density corresponding to the f are de-
fined by ρf (t, x) =

∫
R3 f(t, x, v)dv and jf (t, x) =

∫
R3 vf(t, x, v)dv respectively.

The longitudinal component EL and transversal component ET come from the
Helmholtz decomposition of the electric field in classical Maxwell’s system and
the field equation (1.2)-(1.3) neglect the transversal component of the displace-
ment current in the Maxwell-Ampère equation. As an valid approximation of

Received October 30, 2017; Revised July 18, 2018; Accepted August 16, 2018.
2010 Mathematics Subject Classification. Primary 35L60, 35Q83, 82D10, 85A05.

Key words and phrases. Vlasov-Darwin system, classical solution, global existence, limit.

c©2018 Korean Mathematical Society

1599



1600 X. LI AND J. SUN

the classical Vlasov-Maxwell system (VMS) ([4, 6, 17]), we consider the well-
posedness problem for non-relativistic VDS.

For the classical Vlasov-Maxwell system and its relativistic version, the
global existence of classical solution remain unsolved up to now. A mass of lit-
eratures are contributed to the local existence, the global existence with certain
initial condition or in low dimension, continuation criteria, see [1, 7, 9–16, 33]
and the other references therein. Particularly, Glassey and Strauss in [15]
show that any classical solution exists globally if the momentum support of
the distribution function f remains bounded, where they explicitly establish
the representation formula of the electromagnetic field and its derivatives by
applying the theory of wave equation.

However, for the Darwin equation (1.2)-(1.3), it possesses the underlying el-
liptic structure. Generally speaking, it is convenient by introducing the scalar
and vector potential. Recently the relativistic Vlasov-Darwin system (RVDS)
when replacing v with v̂ in (1.1) have been studied in [5, 24, 30–32]. In [32],
without help of the energy conservation, Sospedra-Alfonso, Agueh and Illner
show that classical solutions to the relativistic Vlasov-Darwin system with gen-
eralized variables (RVDG) exists globally for the small datum by introducing
the scalar potential and the generalized variables to obtain RVDG from RVDS
and establishing the equivalence between the two ones in the sense of classical
solutions. In the following, we set all physical constant except the light speed
c to 1. We will follow the method in [32] and define the electromagnetic field
(EL, ET , B) by the scalar and vector potential:

EL(t, x) = −∇xΦ(t, x), ET (t, x) = −c−1∂tA(t, x), B(t, x) = ∇×A(t, x),

where (EL, ET , B) formally solves (1.2)-(1.3) (see [32, Page 837]) when choosing
the Coulomb or transverse gauge ∇ · A = 0. Then for fixed (Φ, A) ∈ C1(I,
C2(R3);R × R3), the characteristic system of the Vlasov equations (1.1) is as
follows:

Ẋ(s, t, x, v) = V (s, t, x, v),

V̇ (s, t, x, v) = [−∇Φ−c−1∂tA+c−1V (s)(∇×A)](s, t,X(s, t, x, v), V (s, t, x, v)).

We define P (s) = V (s, t, x, v) + c−1A(s,X(s, t, x, v)) and then vA(s) = P (s)−
c−1A(s,X(s, t, x, v). Now the characteristic equation with the generalized vari-
ables (x, p) have

Ẋ(s, t, x, p) = vA(s, t, x, p),(1.4)

Ṗ (s, t, x, p) = [−∇Φ +

3∑
i=1

c−1viA∇Ai](s,X(s))

:= [−∇Φ + c−1viA∇Ai](s,X(s)).(1.5)

Noting by the direct calculating that

∇x · vA +∇p · (−∇Φ + c−1viA∇Ai) = 0,
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which shows that the field in (1.4)-(1.5) is an incompressible vector field. Hence
we obtain the equivalent representation of non-relativistic VDS: the three di-
mensional Vlasov-Darwin system with generalized variables (VDG):

∂tf + vA · ∇xf − [∇Φ− c−1viA∇Ai] · ∇pf = 0,(1.6)

f(0, x, p) =
◦
f (x, p),(1.7)

Φ(t, x) =

∫
R3

ρf (t, y)

|y − x|
dy,(1.8)

A(t, x) =
1

2c

∫
R3

[id+ ω ⊗ ω]jAf (t, y)
dy

|y − x|
,(1.9)

vA = p− c−1A(t, x).(1.10)

Here (x, p) ∈ R3 × R3, t > 0, id is the 3 × 3 identity matrix, ω is the unit
vector y−x

|y−x| , the symbol ⊗ represents the tensor product, i.e., ω⊗ω is the 3×3

matrix with entries ωiωj , where ω = (ω1, ω2, ω3). ρf (t, x) =
∫
R3 f(t, x, p)dp

and jAf (t, x) =
∫
R3 vAf(t, x, p)dp denote the macroscopic density and current

density respectively. As usual, the repeated indexes means summation, that
is, viA∇Ai =

∑3
i=1 v

i
A∇Ai. Hence, we can consider the Cauchy problem of

non-relativistic VDG such that the well-posedness problem for non-relativistic
VDS is also solved. We give the first result for the Cauchy problem of non-
relativistic VDG where we need to utilize the deduced new energy conservation
because we loss the virtue of the relativistic velocity being less than 1.

Before introducing the structure of our paper, we briefly recall the classi-
cal approximation of RVMS and VMS-the Vlasov-Poisson system (VPS). It
has been received a great deal of investigation, including global existence and
growth estimates of classical solutions ([2, 3, 18, 19, 22, 25, 27]; see also [26] and
the references therein) and global existence and uniqueness of weak solutions
([20], [23]). This paper is organized as follows. In the following section, we
give some invariants for non-relativistic VDG and present our main results. In
Section 3, the local existence of classical solution are proved by using some a
prior estimates and the blow-up criterion are presented. In Section 4, we prove
that in the pointwise sense the solutions to non-relativistic VDG converges to
the one of VPS with the same initial data as the light speed c tends to infinity.

2. Main results

Firstly we fix some notation. The Hölder space Ck,αc (Rn;Rm) consists of
compactly supported continuously differentiable vector valued functions whose
k-th order partial derivatives are locally Hölder continuous in Rn with ex-
ponent α ∈ (0, 1) (see, e.g., [8, Chapter 4]) and when m = 1, we write
Ck,αc (Rn) instead of Ck,αc (Rn;R). For p, q ∈ [1,∞], ‖f‖Lqx(Lpy) denotes the

norm (
∫
R3 |

∫
R3 |f(t, y)|pdy|

q
p dx)

1
q where q, p =∞ is standard if no confusion is

possible. C(a) denotes a positive constant only depending on the parameter
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a and the constant M stands for generic constants whose values may change
from line to line, but not depending on the light speed c.

In the following, we assume that f(t, x, p) is a classical solution to non-
relativistic VDG and then investigate its conservation properties. The mapping
R3 × R3 3 (x, p) 7→ (Xf (s, t, x, p), Pf (s, t, x, p)) ∈ R3 × R3 defined by the
characteristic equations (1.4), (1.5) is a measure preserving C1-diffeomorphism
and thus f is constant along the characteristics. In addition, for 1 ≤ p ≤ ∞

‖f(t)‖Lp = ‖
◦
f ‖Lp .

In particular, we have conservation of mass (p = 1) and conservation of non-
negativity. We also have the conservation law of charges

∂tρ+ divxjAf = 0.

For the derivation of these above properties, we refer the readers to [32, Lemma
2]. Now we present conservation of total energy for the non-relativistic VDG.
For this purpose we define local energy and local momentum respectively by

e(t, x) =

∫
R3

|p− c−1A|2f(t, x, p)dp+
1

2π
(|∇xΦ|2 + |∇xA|2),

m(t, x) = −
∫
R3

K(t, x, p)f(t, x, p)dp+

∫
R3

p2pf(t, x, p)dp

− c−1
∫
R3

p2A(t, x)f(t, x, p)dp,

where K(t, x, p) = (p− c−1A(t, x))[c−1p ·A(t, x) + c−1(p− c−1A(t, x)) ·A(t, x)].
By complicated calculation, we can obtain

∂te(t, x) + divxm(t, x) = 0,

which by integrating over [0, t] × R3 leads to the conservation of total en-
ergy ε(t) = ε(0), where the total energy ε(t) at time t is defined by ε(t) =∫
R3 e(t, x)dx, namely

ε(t) =

∫
R3×R3

|p− c−1A(t, x)|2f(t, x, p)dpdx

+
1

2π

∫
R3

|∇xΦ|2(t, x) + |∇xA|2(t, x)dx.

Now we state main results of this paper. The first one concerns existence
and uniqueness of a local classical solution to non-relativistic VDG and its
continuation criterion.

Theorem 2.1. For any nonnegative
◦
f∈ C1,α

c (R3 × R3) there exists T ∗ ≥ 0

not depending on c such that the non-relativistic VDG with initial datum
◦
f

has a unique classical and nonnegative solution f c ∈ C1([0, T ] × R3 × R3)

on any time interval [0, T ] ⊂ [0, T ∗[ for any c ≥ max{1,
√
M∗} with M∗ =
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3
4 (π2 )

1
3P (T )‖

◦
f ‖

2
3

L1
x,p
‖
◦
f ‖

1
3

L∞x,p
where the nondecreasing function P (t) : [0, T ∗[→

R is independent of the light speed c and satisfies:

f c(t, x, p) = 0 for |p| ≥ P (t),

and the induced potentials (Φc, Ac) ∈ C1([0, T ∗[, C2(R3;R × R3)). Moreover,
the mappings

[0, T ∗[3 t 7−→ f c(t) ∈ C1,α
c (R3 × R3)

and

[0, T ∗[3 t 7−→ (∇Φc, viAc∇(Ac)i) ∈ C1
b (R3;R6),

are well defined and uniformly bounded with respect to the Sobolev norm
‖ · ‖W 1,∞

x,p
on compact subintervals of [0, T ∗[. In addition, if T > 0 is the

life span of f c (namely if [0, T [ is the maximal existing time interval of the
solution), then T is independent of c and

P̄ := sup{|p| : ∃ 0 ≤ t < T, x ∈ R3 such that f c(t, x, p) 6= 0} <∞,

implies that for any c ≥ max{1,
√

3
4 (π2 )

1
3 P̄‖

◦
f ‖

2
3

L1
x,p
‖
◦
f ‖

1
3

L∞x,p
} the solution is

global in time, that is, T =∞.

Based on the above statement, we are in the position to discuss the clas-
sical limit of the non-relativistic VDG and in the following we assume that
(f c(t, x, p),Φc(t, x), Ac(t, x)) is the solution constructed in Theorem 2.1 in an
interval [0, T [ with T not depending on c.

Theorem 2.2. Let
◦
f∈ C1,α

c (R3 × R3) be nonnegative, and Let (f∞, E∞) be
the unique global classical solution to the Cauchy problem of the Vlasov-Poisson
system (VPS)

∂tf + p · ∇xf + E · ∇pf = 0, f(0, x, p) =
◦
f (x, p),

U(t, x) = −V (·) ∗x ρf (t, ·), V (x) = −(4π|x|)−1,
E(t, x) = −∇xU(t, x),

ρf (t, x) =
∫
R3 f(t, x, p)dp, jf (t, x) =

∫
R3 pf(t, x, p)dp,

in the plasma physics case, then for any [0, T̄ ] ⊆ [0, T [ there exists a constant
M > 0 depending on the initial datum and T̄ such that

|f c(t, x, p)−f∞(t, x, p)|+|∇Φc(t, x)−E∞(t, x)|+|Ac(t, x)|+|∇xAc(t, x)| ≤Mc−1

for all x ∈ R3, p ∈ R3, t ∈ [0, T̄ ] and c ≥ max{1,
√

3
4 (π2 )

1
3P (T̄ )‖

◦
f ‖

2
3

L1
x,p
‖
◦
f ‖

1
3

L∞x,p
}.

Remark 2.1. The existence and uniqueness of the classical solution (f∞, E∞)
to the Cauchy problem of the VPS was proved in [25,28] (see also [26]).
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3. Proof of Theorem 2.1

In this section, we follow the same argument presented in [32, Theorem 1]
to prove local-in-time existence for non-relativistic VDG and establish contin-
uation criterion for enough large c ≥ 1.

For non-relativistic VDG, the different part of the proof mainly have two
points. On one hand, the current density jAf (t, x) =

∫
R3 |p − c−1A(t, x)|

f(t, x, p)dp no longer meet the inequality |jAf | ≤ |ρf | compared with the rela-
tivistic version (see [32] for details). Here we obtain the a prior bound for the
vector potential A(t, x) by means of the energy conservation, which is sufficient
to establish boundedness of the velocity support and jA(t, x). On the other
hand, the well-posedness for integral equation (1.9) rely on the light speed. We
show that the integral equation (1.9) is well-posedness with the light speed c
enough large. Hence when carrying out the proof for Theorem 2.1 , we mainly
discuss the boundness of velocity support and convergence of the approximate
solutions with the light speed c enough large. For the discussion of the unique-
ness and regularity for the solution, it is similar to [32, Proof of Theorem 1:
Steps 5-8]. The difference point is that [32, Proof of Theorem 1: Steps 5-8]
gives the proof with the light speed c = 1. We apply it by scaling property,
i.e., if f is a solution of non-relativistic VDG with c 6= 1, then

(3.1)

f̄(t, x) = f(c−
3
2 t, c−

1
2x, cp),

Φ̄(t, x) = c−2Φ(c−
3
2 t, c−

1
2x),

Ā(t, x) = c−2A(c−
3
2 t, c−

1
2x),

is a solution of non-relativistic VDG with the speed of light normalized to unity.
So we omit its proof here.

Since the vector potential A(t, x) is implicitly defined by integral equation
(1.9), to proceed further we need to show existence and uniqueness of solutions
to this integral equation in suitable function spaces.

Lemma 3.1. Let f(t) ∈ C1([0, T ], C1,α
c (R3×R3;R)), 0 ≤ α ≤ 1, T ≥ 0 and we

assume that there exists an non-decreasing continuous function R(t) : [0, T ]→
[0,∞[ such that for t ∈ [0, T ]

sup{|p| : (x, p) ∈ suppf(t)} ≤ R(t).

Then there exists constant M := 3
4 (π2 )

1
3R(T )‖f‖

2
3

L∞t (L1
x,p)
‖f‖

1
3

L∞t,x,p
> 0 such that

if c >
√
M the integral equation (1.9) has a unique solution Ac ∈ C1

b ([0, T ] ×
R3;R3)) ∩ C1([0, T ], C3,α(R3;R3)).

Proof. The operator T is defined by

T (A)(t, x) =
1

2c

∫
R3

∫
R3

[id+ ω ⊗ ω]pf(t, y, p)
dpdy

|y − x|

− 1

2c2

∫
R3

∫
R3

[id+ ω ⊗ ω]A(t, y)f(t, y, p)
dpdy

|y − x|
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:=
1

c
g(t, x)− 1

c2
K (A)(t, x).

Thus the linear integral equation (1.9) can rewritten by A = T (A) and T
is an bounded linear operator from Cb([0, T ] × R3;R3) to Cb([0, T ] × R3;R3).
Indeed, the linearity is obvious. For any A(t, x) ∈ Cb([0, T ]×R3;R3), we have
by Proposition A.2 and the assumption that

‖g‖L∞t,x ≤ ‖
∫
R3

∫
R3

[id+ ω ⊗ ω]pf(t, y, p)
dpdy

|y − x|
‖L∞t,x

≤ ‖
∫
R3

∫
R3

|pf(t, y, p)| dpdy
|y − x|

‖L∞t,x

≤ 3

2
(
π

2
)

1
3 ‖

∫
R3

|pf(t, x, p)|dp‖
2
3

L∞t (L1
x)
‖
∫
R3

|pf(t, x, p)|dp‖ 1
3
L∞t (L∞x )

≤ 3

2
(
π

2
)

1
3R2(T )‖f‖

2
3

L∞t (L1
x,p)
‖f‖ 1

3
L∞t,x,p

<∞,(3.2)

and

‖K ‖L∞t,x ≤ ‖
∫
R3

∫
R3

[id+ ω ⊗ ω]A(t, y)f(t, y, p)
dpdy

|y − x|
‖L∞t,x

≤ ‖
∫
R3

∫
R3

|A(t, y)f(t, y, p)| dpdy
|y − x|

‖L∞t,x

≤ ‖A‖L∞t,x‖
∫
R3

∫
R3

|f(t, y, p)| dpdy
|y − x|

‖L∞t,x

≤ 3

2
(
π

2
)

1
3R(T )‖f‖

2
3

L∞t (L1
x,p)
‖f‖ 1

3
L∞t,x,p

‖A‖L∞t,x <∞.(3.3)

Further, for any y, z ∈ R3, t ∈ [0, T ], by applying the estimate [31, estimate
(30)] and Lemma A.1, we have

|T (A)(t, y)−T (A)(t, z)|

≤ 3|y − z|‖
∫
R3

∫
R3

|p− c−1A(t, x)|f(t, x, p)
dpdx

|x− ·|2
‖L∞·

≤ 9 · (2π)2/3

2c
|y − z|‖

∫
R3

|p− c−1A(t, x)|f(t, x, p)dp‖
1
3

L1
x

· ‖
∫
R3

|p−A(t, x)|f(t, x, p)dp‖
2
3

L∞x

≤ 9 · (2π)2/3

2c
(R(T ) + c−1‖A(t)‖L∞x )3‖f(t)‖

1
3

L1
x,p
‖f(t)‖ 2

3
L∞x,p
|y − z|

≤ C(R(T ), ‖A‖L∞t,x)|y − z|,

in addition, we have for t, τ ∈ [0, T ], for all R > 0, x ∈ R3

|T (A)(t, x)−T (A)(τ, x)|

≤ 1

2c
|
∫
R3

∫
R3

|A(t, y)−A(τ, y)|f(τ, y, p)
dpdy

|y − x|
|
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+
1

2c
|
∫
R3

∫
R3

|f(t, y, p)− f(τ, y, p)||p− c−1A(t, y)| dpdy
|y − x|

|

≤ 1

2c
‖A(t)−A(τ)‖L∞x

3

2
(
π

2
)

1
3 ‖f‖

2
3

L∞t (L1
x,p)
‖f‖ 1

3
L∞t (L∞x,p)

+
1

2c
|
∫
|y−x|≤R

∫
R3

|f(t, y, p)− f(τ, y, p)||p− c−1A(t, y)| dpdy
|y − x|

|

+
1

2c
|
∫
|y−x|>R

∫
R3

|f(t, y, p)− f(τ, y, p)||p− c−1A(t, y)| dpdy
|y − x|

|

≤ 1

2c
‖A(t)−A(τ)‖L∞x

3

2
(
π

2
)

1
3 ‖f‖

2
3

L∞t (L1
x,p)
‖f‖ 1

3
L∞t (L∞x,p)

+
2πR2

c
(R(T ) + c−1‖A(t)‖L∞x )R3(T )

sup{|f(t, y, p)− f(τ, y, p)|, |y − x| ≤ R, p ≤ R(T )}

+
1

c
(R(T ) + ‖A(t)‖L∞x )‖f‖L∞t (L1

x,p)
R−1,(3.4)

which implies by A ∈ Cb([0, T ]×R3;R3) and f(t) ∈ C1([0, T ], C1,α
c (R3×R3;R))

that T (A)(t, x)→ T (A)(τ, x) uniformly on every compact set in R3 as t→ τ
in [0, T ]. Hence T (A)(t, x) ∈ Cb([0, T ] × R3;R3). Second, we prove that the
operator T is the contraction mapping. For any A1, A2 ∈ Cb([0, T ]× R3;R3),
we have

‖T (A1)−T (A2)‖L∞t,x ≤ c
−2 3

4
(
π

2
)

1
3R(T )‖f‖

2
3

L∞t (L1
x,p)
‖f‖ 1

3
L∞t (L∞x,p)

‖A1 −A2‖L∞t,x
:= c−2M‖A1 −A2‖L∞t,x .

Since c2 > M , there exists real number λ = M
2c2 < 1 such that

‖T (A1)−T (A2)‖L∞t,x < λ‖A1 −A2‖L∞t,x ,

which implies that the operator T is the contraction mapping. So there exists a
unique fixed point Ac ∈ Cb([0, T ]×R3;R3) by the Banach fixed point theorem,
which satisfies

Ac(t, x) =
1

2c

∫
R3

[id+ ω ⊗ ω]jAc(t, y)
dy

|y − x|
,(3.5)

where the current density jAc(x) =
∫
R3 |p−c−1Ac(t, x)|f(t, x, p)dp. If we define

the starting iteration Ac0(t, x) by

Ac0(t, x) =
1

2c

∫
R3

[id+ ω ⊗ ω]jAc(0, y)dp
dy

|y − x|
,

then by the above statement the iterative sequence {Acn(t, x)}n=0,1,2,... with
Acn = T n(Ac0) converges to Ac in Cb([0, T ]×R3;R3). In the following we further
discuss the regularity for Ac. Noticing that the kernel K(x, y) := id+ω⊗ω

|y−x| in

(3.5) satisfies:

|K(x, y)| ≤ C|y − x|−1, |∂xK(x, y)| ≤ C|y − x|−2,
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we can apply the theory for regularity of solutions of Poisson’s equation to Ac.
Firstly, because of jAc(0, x) ∈ Cc([0, T ]× R3;R3), it is obvious by assumption
and [8, Lemma 4.1] that Ac0(t, x) ∈ C1

b ([0, T ] × R3;R3). Now if we assume
that Acn−1(t, x) ∈ C1

b ([0, T ] × R3;R3), [21, Theorem 10.2(iii)] show that the
derivative about each variable exists for Acn(t, x) with

∂tA
c
n(t, x) =

1

2c

∫
R3

[id+ ω ⊗ ω]∂tjAcn−1
(t, y)dp

dy

|y − x|
,

∂xiA
c
n(t, x) = ∂xi

1

2c

∫
R3

[id+ ω ⊗ ω]jAcn−1
(t, y)dp

dy

|y − x|
, i = 1, 2, 3.

We can follow estimate (3.2)-(3.4) to obtain ∂tA
c
n(t) ∈ Cb([0, T ]×R3;R3), and

∂xiA
c
n(t) ∈ Cb(R3;R3) for any t ∈ [0, T ]. Further by Proposition A.2, we have

for t, τ ∈ [0, T ], for all d,R > 0, x ∈ R3 with 0 < d ≤ R,

|∂xiAck,n(t, x)− ∂xiAck,n(τ, x)|
≤ C[R−3‖jn−1‖L∞t (L1

x)
+ d‖∂xjn−1‖L∞t (L1

x)

+ (1 + ln(R/d)) sup{|jn−1(t, y)− jn−1(τ, y)|, |y − x| ≤ R}].

Under the assumption of function f(t, x, p) ∈ C1([0, T ], C1,α
c (R3 × R3;R)) and

Acn−1(t, x) ∈ C1
b ([0, T ] × R3;R3), we have jn−1(t, x) → jn−1(τ, x) for t → τ

in [0, T ] uniformly on every compact set R3, which implies that ∂xiA
c
n(t, x) ∈

Cb([0, T ] × R3;R3) with i = 1, 2, 3. Hence Acn(t, x) ∈ C1
b ([0, T ] × R3;R3) and

then by the completeness we have Ac(t, x) ∈ C1
b ([0, T ] × R3;R3). Further,

the obtained regularity on Ac conclude that jAc ∈ C1([0, T ];C1
c (R3;R3)) and

then jAc ∈ C1([0, T ];Cαc (R3;R3)). Thus it follows by [21, Theorem 10.3] that
Ac ∈ C1([0, T ];C2,α(R3;R3)). We compete the proof. �

Proof of Theorem 2.1. We construct an iterative sequence of solutions to

VDG as follows: Let
◦
f∈ C1,α

c (R3 × R3) with
◦
f (x, p) = 0 for |x| > R0 or

|p| > U0 and for n = 0, we set

f0(t, x, p) =
◦
f (x, p), t ≥ 0, x ∈ R3, p ∈ R3.

Assuming that fn(t, x, p) : [0, T ]× R3 × R3 → [0,∞[ is defined with any given
T > 0 and satisfies the assumed condition in [32, Lemma 3(a)] and Lemma 3.1.
we give the definition of (Φn(t, x), An(t, x)) as follows:

Φn(t, x) =

∫
R3

ρn(t, x)
dy

|y − x|
, ρn(t, x) =

∫
R3

fn(t, x, p)dp,

An(t, x) =
1

2c

∫
R3

[id+ ω ⊗ ω]jn(t, x)
dy

|y − x|
,

jn(t, x) =

∫
R3

|p− c−1An|fn(t, x, p)dp.

By [32, Lemma 3(a)], the iterate Φn(t, x) is well defined and satisfies Φn(t, x) ∈
C1([0, T ], C2,α(R3)). Then by Lemma 3.1, there exists an enough large M∗n > 0
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such that An(t, x) satisfying C1([0, T ], C2,α(R3;R3)) is well defined for c ≥√
M∗n. Further denote by Zn(s, t, z) = (Xn, Pn)(s, t, z) the solution of the

characteristic system for the Vlasov equation (1.6)

Ẋn(s, t, z) = vAn(s,Xn(s, t, z), Pn(s, t, z)),(3.6)

Ṗn(s, t, z) = −[∇Φn − c−1viAn∇A
i
n](s, t,Xn(s, t, z), Pn(s, t, z)),(3.7)

Zn(t, t, z) = z := (x, p).

We define the (n+ 1)-th iterate of the phase space density by

fn+1(t, z) =
◦
f (Zn(0, t, z)).(3.8)

By [32, Lemma 2, Remark 1], the approximation sequence {fn(t, x, p)} is well
defined and verifies the following regularity:

0 ≤ fn(t, x, p) ∈ C1([0, T ], C1,α(R6)).

If we further define the sequence of velocity support functions: for each t ∈
[0, T ], n ∈ N,

Pn(t) = sup{|p| : there exist s ∈ [0, t] and x ∈ R3 such that fn(s, x, p) 6= 0}+1.

It is easy to see that when n = 0, we have P 0(t) = U0 and by (3.8) we also
have

Pn(t) = sup{|Pn−1(s, 0, x, p)| : s ∈ [0, t], (x, p) ∈ supp
◦
f}+ 1(3.9)

and

fn(t, x, p) = 0 for |p| ≥ Pn(t) or |x| ≥ R0 +

∫ t

0

Pn(s)ds,

which implies that fn satisfies the assumption in Lemma 3.1 for any n ∈ N.

Step 1. Boundedness of velocity support. In order to uniformly bound the
sequence of velocity support functions, we firstly consider any time interval
[0, T [ with T > 0 given. By the characteristic equation (3.7), we have

|Pn(s, 0, x, p)| ≤ |p|+
∫ s

0

(‖∂xΦn(τ)‖L∞x + c−1(|Pn(τ, 0, x, p)|

+ c−1‖An(τ)‖L∞x )‖∂xAn(τ)‖L∞x )dτ.(3.10)

By Proposition A.2 and conservation of mass, we have

‖∂xΦn(t)‖L∞x ≤M‖ρ
n(t)‖

1
3

L1
x
‖ρn(t)‖

2
3

L∞x

≤M‖f(t)‖
1
3

L1
x,p
‖
∫
|p|≤Pn(t)

fn(t, x, p)dp‖
2
3

L∞x

≤M‖
◦
f ‖

1
3

L1
x,p
‖
◦
f ‖

2
3

L∞x,p
(Pn(t))2.
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Because of the current density jn(t, x) =
∫
R3 |p− c−1An|fn(t, x, p)dp, we need

to make the careful estimate for the vector potential. By Proposition A.2,
Proposition A.3, the energy conservation and noticing c ≥ 1, it follows that

‖An(t)‖L∞x ≤Mc−1‖jn(t)‖
1
3

L∞x
‖jn(t)‖

2
3

L1
x

≤Mc−1(‖
◦
f ‖L1

x,p
+ ε(0))

2
3 (Pn(t) + c−1‖An(t)‖L∞x )

1
3Pn(t)

≤Mc−1(‖
◦
f ‖L1

x,p
+ ε(0))

2
3 ((Pn(t))

4
3 + c−

1
3 ‖An(t)‖

1
3

L∞x
Pn(t))

≤Mc−1(‖
◦
f ‖L1

x,p
+ ε(0))

2
3 ((Pn(t))

4
3 + ‖An(t)‖

1
3

L∞x
Pn(t))

:= C(
◦
f)((Pn(t))

4
3 + ‖An(t)‖

1
3

L∞x
Pn(t)),

by Young’s inequality with ε = 2
1
3 , we obtain that

‖An(t)‖L∞x ≤ C(
◦
f)(Pn(t))

4
3 +

1

3
(‖An(t)‖

1
3

L∞x
)3ε3 +

2

3
(C(

◦
f)Pn(t)))

3
2 ε−

3
2

≤ C(
◦
f)(Pn(t))

4
3 +

2

3
‖An(t)‖L∞x +

√
2

3
(C(

◦
f)Pn(t)))

3
2 ,

which implies that

‖An(t)‖L∞x ≤ 3C(
◦
f)(Pn(t))

4
3 +
√

2(C(
◦
f)Pn(t)))

3
2

≤ C(
◦
f)(Pn(t))

3
2 .(3.11)

Further, we estimate the first-order derivative for the potentials. Proposition
A.2 shows that

‖∂xAn(t)‖L∞x ≤Mc−1‖jn(t)‖
2
3

L∞x
‖jn(t)‖

1
3

L1
x
.

In the same way, using (3.11), we have

‖∂xAn(t)‖L∞x ≤M(‖
◦
f ‖L1

x,p
+ ε(0))

1
3 [Pn(t) + ‖An(t)‖L∞x ]

2
3 (Pn(t))2

≤M(‖
◦
f ‖L1

x,p
+ ε(0))

1
3 [Pn(t) + C(

◦
f)(Pn(t))

3
2 ]

2
3 (Pn(t))2

≤ C(
◦
f)(Pn(t))3.(3.12)

Now we return back to (3.10) and then by using (3.11)-(3.12), we obtain that

|Pn(s, 0, x, p)| ≤ U0 + C(
◦
f)

∫ s

0

((Pn(τ))2 + (|Pn(τ, 0, x, p)|

+ (Pn(τ))
3
2 )(Pn(τ))3dτ.

Combining the definition (3.9) we have the inequality

Pn+1(t) ≤ C0 + C0

∫ t

0

(Pn(τ))
9
2Pn+1(τ)dτ,
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where C0 := U0 + C(
◦
f). By induction we can show that there exists a non-

negative, non-decreasing function P (t) ∈ C([0, T ∗[;R) with T ∗ = 2
9C
− 11

2
0 not

depending on the light speed c such that for all n ∈ N

Pn(t) ≤ P (t), t ∈ [0, T ∗[,(3.13)

and the function P (t) is the maximal solution of

Ṗ (t) = C0P
11
2 (t), P (0) = C0,

which exists on the interval [0, 29C
− 11

2
0 [. Then in any time interval [0, T̄ ] ⊂

[0, T ∗[, we take M∗ = 3
4 (π2 )

1
3P (T̄ )‖

◦
f ‖

2
3

L1
x,p
‖
◦
f ‖

1
3

L∞x,p
such that for all n ∈ N,

t ∈ [0, T̄ ],

M∗n < M∗.

Since c ≥ max{1,
√
M∗}, for any n ∈ N, An(t, x) satisfying C1([0, T̄ ], C2,α(R3;

R3)) is well defined for c ≥ max{1,
√
M∗}. In addition we have

‖ρn(t)‖L∞x +‖jn(t)‖L∞x +‖∂xΦn(t)‖L∞x +‖∂xAn(t)‖L∞x +‖An(t)‖L∞x(3.14)

≤ C(T̄ ,
◦
f).

In addition, we also can obtain that for any t ∈ [0, T̄ ] and all n ∈ N,

‖∂xρn(t)‖L∞x +‖∂xjn(t)‖L∞x +‖∂2xΦn(t)‖L∞x +‖∂2xAn(t)‖L∞x ≤ C(T̄ ,
◦
f),(3.15)

which have the similar proof with the estimate [32, (82)] when substituting

vAn = Pn(s) − An(s,Xn(s)) for vAn = Pn(s)−An(s,Xn(s))√
1+|Pn(s)−An(s,Xn(s))|2

and we shall

neglect the proof.

Step 2. Convergence of the approximation solutions. Although we can apply
the proof of [32, Theorem 1, step 4] to our case, the main difference still come
from the current density. So we only point out the error. When we prove that
fn is Cauchy sequence on [0, T̄ ]× R3 × R3, we shall meet that

|fn+1(t, x, p)− fn(t, x, p)|(3.16)

≤ ‖∂(x,p)
◦
f ‖L∞x,p(|Xn(0, t, x, p)−Xn−1(0, t, x, p)|

+ |Pn(0, t, x, p)− Pn−1(0, t, x, p)|)

≤ M

∫ t

0

(‖∂xΦn(τ)− ∂xΦn−1(τ)‖L∞x + ‖∂xAn(τ)− ∂xAn−1(τ)‖L∞x

+ ‖An(τ)−An−1(τ)‖L∞x )dτ,

where we use c ≥ 1. Similarly, we need to establish a Gronwall’s inequality
for |fn+1(t, x, p) − fn(t, x, p)|. Because the scalar potential is independent of
jn, its proof is the same with [32, Theorem 1, step 4]. In the following we
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shall estimate the terms for the vector potential. According to (3.13), let

R = max{R0 + C(
◦
f)T̄P

3
2 (T̄ ), P (T̄ )} and we have

suppfn(t) ⊂ BR ×BR
for all n ∈ N, t ∈ [0, T̄ ]. By definition, it follows that

An(t, x)−An−1(t, x)(3.17)

=
1

2c

∫
R3

∫
R3

[id+ ω ⊗ ω](vAnf
n(t, y, p)− vAn−1f

n−1(t, y, p))
dpdy

|y − x|

=
1

2c2

∫
R3

∫
R3

[id+ ω ⊗ ω](An−1(t, y)−An(t, y))fn(t, y, p)
dpdy

|y − x|

+
1

2c

∫
R3

∫
R3

[id+ ω ⊗ ω](p− c−1An−1(t, y))

(fn(t, y, p)− fn−1(t, y, p))
dpdy

|y − x|
:= J1(t, x) + J2(t, x).

For J1, by suppfn(t) ⊂ BR × BR, Lemma A.1 and Hölder inequality we have
that

J1(t, x) ≤ M

2c2
‖
∫
BR

|An−1(t, x)−An(t, x)|fn(t, x, p)dp‖
1
3

L1
x(BR)

‖
∫
BR

|An−1(t, x)−An(t, x)|fn(t, x, p)dp‖
2
3

L2
x(BR)

≤ M

2c2
‖
∫
BR

fn(t, x, p)dp‖
1
3

L2
x(BR)‖

∫
BR

fn(t, x, p)dp‖
2
3

L∞x (BR)

‖An−1(t)−An(t)‖L2
x(BR)

≤ C(R,
◦
f)‖An−1(t)−An(t)‖L2

x(BR).(3.18)

For J2, by suppfn(t) ⊂ BR ×BR, (3.14) and Lemma A.1 we have

J2(t, x) ≤ C(R,
◦
f)

∫
BR

∫
BR

|fn(t, y, p)− fn−1(t, y, p)| dpdy
|y − x|

≤ C(R,
◦
f)‖

∫
BR

|fn(t, x, p)− fn−1(t, x, p)|dp‖
2
3

L1
x(BR)

· ‖
∫
BR

|fn(t, x, p)− fn−1(t, x, p)|dp‖
1
3

L∞x (BR)

≤ C(R,
◦
f)‖f(t)− g(t)‖L∞x,p .(3.19)

Combining(3.17) with (3.18), (3.19), we have

‖An(t)−An−1(t)‖L∞x(3.20)

≤ C(R,
◦
f)‖An−1(t)−An(t)‖L2

x(BR) + C(R,
◦
f)‖fn(t)− fn−1(t)‖L∞x,p .



1612 X. LI AND J. SUN

In the following, we shall estimate the derivative of the vector potential. By

∂xAn(t, x)− ∂xAn−1(t, x)(3.21)

≤ 1

2c

∫
R3

∫
R3

|vAnfn(t, y, p)− vAn−1
fn−1(t, y, p)| dy

|y − x|2

≤ 1

2c

∫
BR

∫
BR

|p− c−1An(t, y)||fn(t, y, p)− f (n−1)(t, y, p)| dy

|y − x|2

+
1

2c2

∫
BR

∫
BR

|An(t, y)−An−1(t, y)|fn−1(t, y, p)
dy

|y − x|2

≤ C(R,
◦
f)‖fn(t)− fn−1(t)‖L∞x,p

+ C(R,
◦
f)‖

∫
BR

|An−1(t, x)−An(t, x)|fn(t, x, p)dp‖
1
3

L1
x(BR)

· ‖
∫
BR

|An−1(t, x)−An(t, x)|fn(t, x, p)dp‖
2
3

L∞x (BR)

≤ C(R,
◦
f)‖fn(t)− fn−1(t)‖L∞x,p + C(R,

◦
f)‖An(t)−An−1(t)‖L∞x .

Then we shall apply the crucial tools in [32, Lemma 8] to (3.20) such that we
have

‖An(t)−An−1(t)‖L∞x ≤ C(R,
◦
f)‖fn(t)− fn−1(t)‖L∞x,p .

Indeed, if we define hλ = λfn + (1 − λ)fn−1 for 0 ≤ λ ≤ 1. It is easy to see
that hλ ≥ 0 has compact support and ∂λhλ = fn − fn−1. By [32, Lemma 3]
we define the Darwin vector potential Aλ induced by hλ by

∆Aλ(t, x) = −1

c

∫
BR

vAλhλ(t, x, p)dp− 1

c
∇
∫
BR

∫
BR

∇· (vAλhλ)(t, x, p)
dpdy

|y − x|
,

and ∇·Aλ = 0, where we have dropped a numerical factor. Notice that An (or
An−1) solves the above equation when λ = 1 (or λ = 0). Then by the Jensen’s
inequality, we have∫

R3

|An(t, x)−An−1(t, x)|2dx =

∫
R3

|
∫ 1

0

∂λAλ(t, x)dλ|2dx

≤
∫ 1

0

∫
R3

|∂λAλ(t, x)|2dxdλ

≤ sup
0≤λ≤1

∫
R3

|∂λAλ(t, x)|2dx.

So we need to estimate ‖∂λAλ(t)‖L2
x(R3) for all 0 ≤ λ ≤ 1 and t ∈ [0, T̄ ].

Here we give some notations. We denote by Aiλ the component of the vector
potential Aλ. From the equation satisfied by Aλ, we can obtain that

∆Aiλ(t, x) = −1

c

∫
BR

viAλhλ(t, x, p)dp−1

c
∂xi

∫
BR

∫
BR

∇·(vAλhλ)(t, x, p)
dpdy

|y − x|
.
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Differentiating the equation with respect to the variable λ, we obtain that

∆∂λA
i
λ(t, x) = − 1

c

∫
BR

∂λ(viAλhλ)(t, x, p)dp

− 1

c
∂xi

∫
BR

∫
BR

∇ · ∂λ(vAλhλ)(t, y, p)
dpdy

|y − x|
.

Then multiplying ∂λA
i on both sides, it follows by integration by parts that∫

R3

|∂x∂λAiλ|2(t, x)dx

=

∫
BR

∫
BR

∂λA
i
λ(t, x)∂λ(viAλhλ)(t, x, p)dpdx

−
∫
R3

∫
BR

∂λ∂xiA
i
λ(t, x)∇ · ∂λ

∫
BR

vAλhλ(t, y, p)dp
dydx

|y − x|
,(3.22)

where ∂λA
i
λ∂λ(viAλhλ) only represents the product of the two terms. Now the

sum with respect to i = 1, 2, 3 in (3.22) gives∫
R3

|∂x∂λAλ|2(t, x)dx

=
1

c

∫
BR

∫
BR

∂λAλ(t, x)∂λ(vAλhλ)(t, x, p)dpdx

− 1

c

∫
R3

∫
BR

∂λ∂xAλ(t, x)∇ · ∂λ
∫
BR

vAλhλ(t, y, p)dp
dydx

|y − x|

=
1

c

∫
BR

∫
BR

hλ(∂λAλ(t, x) · ∂λvAλ)dpdx

+
1

c

∫
BR

∫
BR

(∂λAλ(t, x) · vAλ)∂λhλdpdx

− 1

c

∫
R3

∫
BR

∂λ∇ ·Aλ(t, x)∇ · ∂λ
∫
BR

vAλhλ(t, y, p)dp
dydx

|y − x|
.(3.23)

Using ∇ ·Aλ = 0 and observing ∂λvAλ = −∂λA, we obtain∫
R3

|∂x∂λAλ|2(t, x)dx+
1

c

∫
BR

∫
BR

hλ(t, x, p)|∂λAλ|2(t, x)dpdx

=
1

c

∫
BR

∫
BR

(∂λAλ(t, x) · vAλ)∂λhλdpdx.(3.24)

Comparing with RVDG, (3.24) have the easier form. In addition, it is easy to
see that ∫

R3

|∂x∂λAλ|2(t, x)dx+
1

c

∫
BR

∫
BR

hλ|∂λAλ|2dpdx

= ‖∂x∂λAλ(t)‖2L2
x

+
1

c
‖(
∫
BR

hλ(t, x, p)dp)
1
2 ∂λAλ‖2L2

x(BR).(3.25)
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By the Hölder inequality and c ≥ 1, we can deduce that

1

c

∫
BR

∫
BR

(∂λAλ(t, x) · vAλ)∂λhλdpdx

≤ C(R,
◦
f)‖∂λAλ(t)‖L2

x(BR)‖∂λhλ(t)‖L2
x,p
.(3.26)

The estimates (3.24), (3.25) and (3.26) imply that

‖∂x∂λAλ‖2L2
x
≤ C(R,

◦
f)‖∂λAλ(t)‖L2

x(BR)‖fn(t)− fn−1(t)‖L2
x,p
,

which implies by Poincaré inequality (see [8]) that

‖∂λAλ(t)‖2L2
x(BR) ≤ C(R,

◦
f)‖∂x∂λAλ(t)‖2L2

x

≤ C(R,
◦
f)‖∂λAλ(t)‖L2

x(BR)‖fn(t)− fn−1(t)‖L2
x,p
.

So we have

‖∂λAλ(t)‖L2
x(BR) ≤ C(R,

◦
f)‖fn(t)− fn−1(t)‖L2

x,p

≤ C(R,
◦
f)‖fn(t)− fn−1(t)‖L∞x,p ,(3.27)

which implies by (3.14) that

‖An(t)−An−1(t)‖L∞x ≤ C(R,
◦
f)‖fn(t)− fn−1(t)‖L∞x,p .(3.28)

Up to now, we have closed the Gronwall inequality by (3.16), (3.20), (3.21)
and (3.28), which leads that the sequence {fn} are Cauchy sequences in the
C0 norm and it converge uniformly f c ∈ C0([0, T̄ ] × R3 × R3). We complete
the proof of Theorem 2.1. �

4. Proof of Theorem 2.2

In this section, we follow the argument in [29] and discuss the classical limit
of the non-relativistic VDG.

Proof of Theorem 2.2. By the vlassov equation for non-relativistic VDG
and VPS, we have

∂t(f
c − f∞) + vAc · ∇x(f c − f∞)− [∇Φc − c−1viAc∇(Ac)i] · ∇p(f c − f∞)

= ∂tf
c − ∂tf∞ + vAc · ∇xf c − vAc · ∇xf∞ − [∇Φc − c−1viAc∇(Ac)i] · ∇pf c

+ [∇Φc − c−1viAc∇(Ac)i] · ∇pf∞

= − ∂tf∞ − vAc · ∇xf∞ + [∇Φc − c−1viAc∇(Ac)i] · ∇pf∞

= p · ∇xf∞ + E∞ · ∇pf∞ − vAc · ∇xf∞ + [∇Φc − c−1viAc∇(Ac)i] · ∇pf∞

= c−1Ac · ∇xf∞ + [E∞ +∇Φc − c−1viAc∇(Ac)i] · ∇pf∞.

For all t ∈ [0, T̄ ] ⊆ [0, T [, ∇xf∞,∇pf∞ are bounded on [0, T̄ ] and we define

d(t) = sup{|f c(s, x, p)− f∞(s, x, p)| : x ∈ R3, p ∈ R3, and s ∈ [0, t]}.
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In the following, we estimate the vector potential Ac and then by Young’s
inequality with ε = 2

1
3 ,

‖Ac(t)‖L∞x ≤Mc−1‖jAc(t)‖
1
3

L∞x
‖jAc(t)‖

2
3

L1
x

≤Mc−1(1 + c−1‖Ac(t)‖L∞x )
1
3 ε

2
3 (0)

≤Mc−1 +Mc−
4
3 ‖Ac(t)‖

1
3

L∞x

≤Mc−1 +
1

3
(‖Ac(t)‖

1
3

L∞x
)3ε3 +

2

3
(Mc−

4
3 )

3
2 ε−

3
2

≤Mc−1 +
2

3
‖Ac(t)‖L∞x +

√
2

3
(Mc−

4
3 )

3
2 ,

which leads to

‖Ac(t)‖L∞x ≤Mc−1 +Mc−2 ≤Mc−1.

In the same way, we have

‖∂xAc(t)‖L∞x ≤Mc−1‖jAc(t)‖
2
3

L∞x
‖jAc(t)‖

1
3

L1
x
≤Mc−1.

By the definition of E∞ and Φc, we have

E∞(t, x) +∇Φc(t, x)

=

∫
R3

∫
R3

x− y
|x− y|3

f∞(t, y, p)dydp−
∫
R3

∫
R3

x− y
|x− y|3

f c(t, y, p)dydp

=

∫
R3

∫
R3

x− y
|x− y|3

(f∞(t, y, p)− f c(t, y, p))dydp.

By means of Lemma A.1, it follows that

|E∞(t, x) +∇Φc(t, x)|

≤ M‖
∫
R3

|f∞(t, x, p)− f c(t, x, p)|dp‖
1
3

L1
x
‖
∫
R3

|f∞(t, x, p)− f c(t, x, p)|dp‖
2
3

L∞x

≤ MP 3(T̄ )(U0 + T̄P (T̄ ))
1
3 ‖f∞(t)− f c(t)‖L∞x,p ≤Md(t).

Thus for any x ∈ R3, p ∈ R3 and t ∈ [0, T̄ ], by directly computing we have

| d
ds

(f∞ − f c)(s,Xf (s), Pf (s))|

= |∂t(f c − f∞) + vAc · ∇x(f c − f∞)

− [∇Φc − c−1viAc∇(Ac)i] · ∇p(f c − f∞)|(s,Xfc(s), Pfc(s))

≤ Mc−1 +Md(s),

where s ∈ [0, T̄ ] and Xfc(s), Pfc(s) are defined by (3.6), (3.7). Noting that

f∞(0, Xfc(0), Pfc(0))− f(0, Xfc(0), Pfc(0)) =
◦
f (x, p)−

◦
f (x, p) = 0.
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Hence integrating from 0 to t, we have for all t ∈ [0, T̄ ]

|f∞(t, x, p)− f c(t, x, p)| = |
∫ t

0

d

ds
(f∞ − f c)(s,Xfc(s), Pfc(s))ds|

≤M
∫ t

0

(c−1 + d(s))ds ≤Mc−1 +M

∫ t

0

d(s)ds,

which by definition of d(s) leads to

d(s) ≤Mc−1 +M

∫ t

0

d(s)ds.

Then by Gronwall’s inequality

d(s) ≤Mc−1eMt ≤Mc−1.

So it follows that for all x ∈ R3, p ∈ R3, c ≥ 1 and t ∈ [0, T̄ ].

|f∞(t, x, p)− f c(t, x, p)|+ |E∞(t, x) +∇Φc(t, x)|+ |Ac(t, x)|+ |∂xAc(t, x)|
≤ d(t) +Md(t) +Mc−1 ≤Mc−1.

Now we complete the proof of Theorem 2.2. �

A. Appendix

In this appendix, we collect some well known facts which have been used in
the above discussion. We also provide details for the proof of some auxiliary
results in Section 3 and Section 4.

Lemma A.1. For any 1 ≤ p < 3, r0 = 3
3−p and r < r0 < s,

‖
∫
R3

ψ(y)

|y − x|p
dy‖L∞x ≤ C(p, r, s)‖ψ‖1−θLrx

‖ψ‖θLsx ,

where θ = 1−r/r0
1−r/s and the positive constant C(p, r, s) depends only on p, r and

s, in particular, C(p, 1,∞) = 3(4π/p)p/3/(3− p).

Proof. See [24, Lemma 2.7]. �

Proposition A.2. Let ρ ∈ C1([0, T ], C1
c (R3)) and the vector j ∈ C1([0, T ],

C1
c (R3;R3)). Then the following hold:

‖Φ(t)‖L∞x ≤ C‖ρ(t)‖
2
3

L1
x
‖ρ(t)‖

1
3

L∞x
,

‖∇Φ(t)‖L∞x ≤ C‖ρ(t)‖
1
3

L1
x
‖ρ(t)‖

2
3

L∞x
.(A-1)

Moreover, the second order derivative satisfies, for any 0 < d ≤ R,

‖D2
xΦ(t)‖L∞x ≤C[R−3‖ρ(t)‖L1

x
+d‖∂xρ(t)‖L∞x +(1+ln(R/d))‖ρ(t)‖L∞x ].(A-2)

The Darwin vector potential

A(t, x) =
1

2

∫
R3

[id+ ω ⊗ ω]j(t, y)
dy

|y − x|
,
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admits the same estimates as (A-1) and (A-2), but with ρ(t) replaced by j(t).
In addition, we have

‖D2
xA(t)‖L∞x ≤ C[R−3‖j(t)‖L1

x
+ d‖∂xj(t)‖L∞x + (1 + ln(R/d))

sup{|j(t, y)|, |y − x| ≤ R}].

Proof. For the proof, we refer the readers to [26, Lemma P1] and [32, Lemma 6].
For the last inequality, we only check in the process in proving estimate(A-2)
such that we can replace ‖j(t)‖L∞x with sup{|j(t, y)|, |y − x| ≤ R}. �

Proposition A.3. For any p ∈ [1, 54 ], t ∈ [0, T ], jA(t) ∈ Lpx(R3) and

‖jA(t)‖
L

5
4
x

≤ ε 5
4 (t)‖f(t)‖

1
5

L∞x,p
, ‖jA(t)‖L1

x
≤ 1

2
(‖f(t)‖L1

x,p
+ ε(t)).

Proof. By the definition, we have

jA(t, x) =

∫
|p−c−1A(t,x)|≤R

|p− c−1A(t, x)|f(t, x, p)dp

+

∫
|p−c−1A(t,x)|>R

|p− c−1A(t, x)|f(t, x, p)dp

≤ R4‖f(t)‖L∞ +R−1
∫
R3

|p− c−1A(t, x)|2f(t, x, p)dp

≤ (

∫
R3

|p− c−1A(t, x)|2f(t, x, p)dp)
4
5 ‖f(t)‖

1
5

L∞ ,

then we have

‖jA(t)‖
L

5
4
≤ (

∫
R3×R3

|p− c−1A(t, x)|2f(t, x, p)dpdx)
4
5 ‖f(t)‖

1
5

L∞ .(A-3)

In addition, we have

‖jA(t)‖L1 =

∫
R3×R3

|p− c−1A(t, x)|2f(t, x, p)dpdx

≤ 1

2

∫
R3×R3

(1 + |p− c−1A(t, x)|2)f(t, x, p)dpdx.(A-4)

Now we complete the proof. �
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