DOI QR코드

DOI QR Code

Seismic Fragility Analysis of Curved Beam with I-Shape Section

I-Shape 단면을 갖는 곡선 보의 지진 취약도 분석

  • Jeon, Juntai (Department of Civil&Environmental Engineering, INHA Technical College) ;
  • Ju, Bu-Seog (Department of Civil Engineering, Kyunghee University) ;
  • Son, Hoyoung (Department of Civil Engineering, Kyunghee University)
  • Received : 2018.08.23
  • Accepted : 2018.09.27
  • Published : 2018.09.30

Abstract

Purpose: This study was to the fragility evaluation of I-shape curved beam structure subjected to strong ground motions including Gyeongju and Pohang earthquakes Method: In particular, to conduct the analytical model, ABAQUS and ANSYS platform was used in this study. Furthermore, the analytical model using 3D Finite Element Model (FEM) was validated, in comparison to the theoretical solutions at the location of 025L, 05L, and 0.75L in static loading condition. In addition, in order to evaluate the seismic fragility of the curved beam structure, 20 seismic ground motions were selected and Monte-Carlo Simulation was used for the empirical fragility evaluation from 0.2g to 1.5g. Result: It was interesting to find that the probability of the system failure was found at 0.2g, as using 190 MPa limit state and the probability of the failure using 390 MPa limit state was starting from 0.6g. Conclusion: This study showed the comparison of the theoretical solution with analytical solution on I-shaped curved beam structures and it was interesting to note that the system subjected to strong ground motions was sensitive to high frequency earthquake. Further, the seismic fragility corresponding to the curved beam shapes must be evaluated.

연구목적: 본 연구는 I-Shape 단면형상을 가지고 있는 곡선교량의 지진파 불확실성에 따른 안전성 분석을 위해 확률론적 기반 취약도 평가를 목적으로 한다 연구방법: 상용유한요소해석 프로그램(ABAQUS, ANSYS)구축된 모델의 검증을 위해 토크와 집중하중을 적용하여 정적해석에 따른 해석결과와 이론해를 곡선 보의 1/4L, 2/4L, 3/4L 지점에서 휨 모멘트를 비교한 결과 모든 지점에서 1%내로 오차가 발생하는 것으로 나타나 3차원 유한요소 모델에 대한 신뢰성을 확보 하였다. 곡선교량 구조물의 지진파의 불확실성을 위해 경주 및 포항 지진을 포함하여 세계각지에서 발생한 20개의 지진파를 0.2g부터 1.5g까지 5개의 Scale로 변화시켜 시간이력해석을 수행하였으며, Monte-Carlo Simulation을 기반으로 지진 취약도 평가를 수행하였다. 연구결과: 지진 취약도 분석결과 한계상태를 190MPa로 하였을 때 0.2g를 넘어가면서 파괴가 발생하나 한계상태를 315MPa로 하였을 경우 0.6g를 넘어서면서 파괴가 발생하는 것으로 나타났다. 결론: 본 연구에서 이론해와 수치해석 모델을 비교함으로써 유한요소 모델을 검증하였으며 구축된 I-Shape 곡선 보 모델의 경우 고주파수 영역에 민감성을 보이며, 추후 연구에서 곡선 보의 주요 매개변수인 단면형상에 따른 지진 취약도 평가를 수행하고자 한다.

Keywords

References

  1. ABAQUS Ver. 2017, Dassault Systems.
  2. ANSYS Workbench Ver. 18.0.
  3. Lee. W. H. and Jeon. J. T.(1993), "A Study on the Torsional Constant Ratio of Continuous Curved Girder Bridges by Transfer Matrix Method", Magazine and Journal of Korean Society of Steel Construction, Vol 5, pp. 169-180.
  4. Jeon, J. T.(2018), "Seismic Performance Evaluation of Curved Bridge by Gyeong-Ju Earthquakes", Journal of the Society of Disaster Information, Vol. 14, No. 1, pp. 43-50.
  5. Kim, B. G. and Sause, R.(2005), "High Performance Steel Girders with Tubular Flanges", International Journal of Steel Structure, Vol. 5, No. 3, pp. 253-263.
  6. Dong, J. and Sause, R.(2010), " Finite Element Analysis of Curved Steel Girder with Tubular Flange", Engineering Structures, Vol. 32, pp. 319-327. https://doi.org/10.1016/j.engstruct.2009.09.018
  7. Hwang, H., Liu, J. B. and Chiu, Y. H.(2001), "Seismic Fragility Analysis of Highway Bridge", Mid-America Earthquake Center Technical Report MAEC RR-4.
  8. Kennedy, R. P. and Ravindra, M. K.(1984), "Seismic Fragilities for Nuclear Power Plant Risk Studies", Nuclear Engineering and Design, Vol. 79, pp. 47-68. https://doi.org/10.1016/0029-5493(84)90188-2
  9. Padgett, J. E. and Roches, R. D.(2007), "Bridge Functionality Relationships for Improved Seismic Risk Assessment of Transportation Nerworks", Vol. 23, No. 1. pp. 115-130. https://doi.org/10.1193/1.2431209
  10. Tanaka, S., Kameda, H., Nojima, N. and Shunsyke, O.(2000), "Evaluation of Seismic Fragility for Highway Transportation Systems", World Conference on Earthquake Engineering, Vol. 4.
  11. Yang, C. S. W., Werner, S. D. and Roches, R. D.(2015), "Seismic Fragility Analysis of Skewed Bridge in the Central Southeastern United States", Engineering Structures, Vol. 83, pp. 116-128. https://doi.org/10.1016/j.engstruct.2014.10.025
  12. Karimi-Moridani, K., Zarfam, P. and Ghafory-Ashtiany, M.(2017), "Seismic Failure Probability of a Curved Bridge based on Analytical and Neural Network Approaches", Shock and Vibration, Vol. 2017, pp. 1-18.
  13. Ministry of Land, Transport and Maritime Affairs(2010), "Korean Highway Bridge Design Code".
  14. Ministry of Land, Transport and Maritime Affairs(2012), "Korean Highway Bridge Design Code".
  15. Oh. S. H. and Shin. S. H.(2016), "Correlation Analysis of Gyeongju Earthquake Waveform and Structural Damage Scale", Architectural Research, Vol. 32, No.12, pp. 34-44.