DOI QR코드

DOI QR Code

Recent Developments Involving the Application of Infrared Thermal Imaging in Agriculture

  • Lee, Jun-Soo (Department of Mechanical Engineering, Inha University) ;
  • Hong, Gwang-Wook (Department of Mechanical Engineering, Inha University) ;
  • Shin, Kyeongho (Department of Mechanical Engineering, Inha University) ;
  • Jung, Dongsoo (Department of Mechanical Engineering, Inha University) ;
  • Kim, Joo-Hyung (Department of Mechanical Engineering, Inha University)
  • Received : 2018.08.31
  • Accepted : 2018.09.14
  • Published : 2018.09.30

Abstract

The conversion of an invisible thermal radiation pattern of an object into a visible image using infrared (IR) thermal technology is very useful to understand phenomena what we are interested in. Although IR thermal images were originally developed for military and space applications, they are currently employed to determine thermal properties and heat features in various applications, such as the non-destructive evaluation of industrial equipment, power plants, electricity, military or drive-assisted night vision, and medical applications to monitor heat generation or loss. Recently, IR imaging-based monitoring systems have been considered for application in agricultural, including crop care, plant-disease detection, bruise detection of fruits, and the evaluation of fruit maturity. This paper reviews recent progress in the development of IR thermal imaging techniques and suggests possible applications of thermal imaging techniques in agriculture.

Keywords

References

  1. A. K. Shaw, A. Peace, A. G. Power, and N. A. Bosque-Perez, "Vector population growth and condition-dependent movement drive the spread of plant pathogens", Ecology, Vol. 98, No. 8, pp. 2145-2157, 2017. https://doi.org/10.1002/ecy.1907
  2. S. Hussin, W. Khalifa, N. Geissler, and H.-W. Koyro, "Influence of the root endophyte Piriformospora indica on the plant water relations, gas exchange and growth of chenopodium quinoa at limited water availability", J. Agron. Crop Sci., Vol. 203, No. 5, pp. 373-384, 2017. https://doi.org/10.1111/jac.12199
  3. A. A. Gowen, B. K. Tiwari, P. J. Cullen, K. McDonnell, and C. P. O'Donnell, "Applications of thermal imaging in food quality and safety assessment", Trends Food Sci. Technol., Vol. 21, No. 4, pp. 190-200, 2010. https://doi.org/10.1016/j.tifs.2009.12.002
  4. J. Skala, M. Svantner, J. Tesar, and A. Franc, "Active thermography inspection of protective glass contamination on laser scanning heads", Appl. Opt., Vol. 55, No. 34, pp. D60-D66, 2016. https://doi.org/10.1364/AO.55.000D60
  5. C. Meola, G. M. Carlomagno, A. Squillace, and A. Vitiello, "Non-destructive evaluation of aerospace materials with lock-in thermography", Eng. Fail. Anal., Vol. 13, No. 3, pp. 380-388, 2006. https://doi.org/10.1016/j.engfailanal.2005.02.007
  6. T. Sakagami and S. Kubo, "Applications of pulse heating thermography and lock-in thermography to quantitative nondestructive evaluations", Infrared Phys. Technol., Vol. 43, No. 3-5, pp. 211-218, 2002 https://doi.org/10.1016/S1350-4495(02)00141-X
  7. R. Ishimwe, K. Abutaleb1, and F. Ahmed, "Applications of Thermal Imaging in Agriculture-A Review", Adv. Remote Sens., Vol. 3, No. 3, pp. 128-140, 2014. https://doi.org/10.4236/ars.2014.33011
  8. J. Varith, G. M. Hyde, A. L. Baritelle, J. K. Fellman, and T. Sattabongkot, "Non-contact bruise detection in apples by thermal imaging", Innov. Food Sci. Emerg. Technol., Vol. 4, No. 2, pp. 211-218, 2003. https://doi.org/10.1016/S1466-8564(03)00021-3
  9. G. Kim, G.-H. Kim, J. Park, D.-Y. Kim, and B.-K. Cho, "Application of infrared lock-in thermography for the quan- titative evaluation of bruises on pears", Infrared Phys. Technol., Vol. 63, No xx, pp. 133-139, 2014. https://doi.org/10.1016/j.infrared.2013.12.015
  10. D. Akibumi, M. Mitsuru, and I. Etsuji, "Quality Evaluation of Agricultural Products by Infrared Imaging Method : III. Maturity Evaluarion of Fruits and Vegetable", Mem. Fac. Agr. Kagoshima Univ., Vol. 16, pp. 157-164, 1980.
  11. P. Baranowski, J. Lipecki, W. Mazurek, and R. T. Walczak, "Detection of watercore in 'Gloster' apples using thermography", Postharvest Biol. Technol., Vol. 47, No. 3, pp. 358-366, 2008. https://doi.org/10.1016/j.postharvbio.2007.07.014
  12. P. J. Fito, M. D. Ortola, R. De Los Reyes, P. Fito, and E. De Los Reyes, "Control of citrus surface drying by image anal- ysis of infrared thermography", J. Food Eng., Vol. 61, No. 3, pp. 287-290, 2004. https://doi.org/10.1016/S0260-8774(03)00120-1
  13. B. J. Goncalves, T. Marcio de Oliveira Giarola, D. F. Pereira, E. Valerio de Barros Vilas Boas, and Jaime Vilela de Resende "Using infrared thermography to evaluate the injuries of cold-stored guava." J. Food Sci. Technol., Vol. 53, No. 2, pp.1063-1070, 2016. https://doi.org/10.1007/s13197-015-2141-4
  14. S. Y. S. Lisar, R. Motafakkerazad, M. M. Hossain, and I. M. M. Rahman, "Water stress in plants: causes, effects and responses" in Water Stress, InTech, London, pp. 1-14, 2012.
  15. C. Ballester, M. A. Jimenez-Bello, J. R. Castel, and D. S. Intrigliolo, "Usefulness of thermography for plant water stress detection in citrus and persimmon trees", Agric. For. Meteorol., Vol. 168, No. 15, pp. 120-129, 2013. https://doi.org/10.1016/j.agrformet.2012.08.005
  16. A. Khorsandi, A. Hemmat, S. A. Mireei, R. Amirfattahi, and P. Ehsanzadeh, "Plant temperature-based indices using infrared thermography for detecting water status in sesame under greenhouse conditions", Agric. Water Manag., Vol. 204, No. 31, pp. 222-233, 2018. https://doi.org/10.1016/j.agwat.2018.04.012
  17. L. Ilkka and H. G. Jones. "Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress", J. Exp. Bot., Vol. 55, No. 401, pp. 1423-1431, 2004. https://doi.org/10.1093/jxb/erh146
  18. D. L. Mangus, A. Sharda, and N. Zhang. "Development and evaluation of thermal infrared imaging system for high spa- tial and temporal resolution crop water stress monitoring of corn within a greenhouse", Comput. Electron. Agric., Vol. 121, No. xx, pp. 149-159, 2016. https://doi.org/10.1016/j.compag.2015.12.007
  19. A. Dominguez, J. A. de Juan, J. M. Tarjuelo, R. S. Martinez, and A. Martinez-Romero, "Determination of opti- mal regulated deficit irrigation strategies for maize in a semi-arid environment", Agric. Water Manag., Vol. 110, No. xx, pp. 67-77, 2012. https://doi.org/10.1016/j.agwat.2012.04.002
  20. H. G. Jones, M. Stoll, T. Santos, C. de Sousa, M. M. Chaves, and O. M. Grant, "Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine", J. Exp. Bot., Vol. 53, No. 378, pp.2249-2260, 2002. https://doi.org/10.1093/jxb/erf083
  21. I. F. Garcia-Tejero, A. Hernandez-Cotan, O. E. Apolo, V. H. Duran-Zuazo, M. A. Portero, and A. E. Rubio-Casal, "Infrared thermography to select commercial varieties of maize in relation to drought adaptation", Quant. InfraRed Thermogr. J., Vol. 14, No. 1, pp. 54-67, 2017. https://doi.org/10.1080/17686733.2016.1229327
  22. A. Martynenko, K. Shotton, T. Astatkie, G. Petrash, C. Fowler, W. Neily, and A. T. Critchley, "Thermal imaging of soybean response to drought stress: the effect of Ascophyllum nodosum seaweed extract", Springerplus, Vol. 5, No. 1, pp. 1-14, 2016. https://doi.org/10.1186/s40064-015-1659-2
  23. C. Sonneveld, A. L. Van den Bos, and W. Voogt, "Modeling osmotic salinity effects on yield characteristics of substrate- grown greenhouse crops", J. Plant Nutr., Vol. 27, No. 11, pp. 1931-1951, 2005. https://doi.org/10.1081/PLN-200030053
  24. M. Urrestarazu, "Infrared thermography used to diagnose the effects of salinity in a soilless culture", Quant. InfraRed Thermogr. J., Vol. 10, No. 1, pp. 1-8, 2013. https://doi.org/10.1080/17686733.2013.763471
  25. A. Esmaeili, K. Poustini, H. Ahmadi, and A. Abbasi, "Use of IR thermography in screening wheat (Triticum aestivum L.) cultivars for salt tolerance", Arch. Agron. Soil Sci., Vol. 63, No. 2, pp. 161-170, 2017. https://doi.org/10.1080/03650340.2016.1204541
  26. I. Albaladejo, V. Meco, F. Plasencia, F. B. Flores, M. C. Bolarin, and I. Egea, "Unravelling the strategies used by the wild tomato species Solanum pennellii to confront salt stress: From leaf anatomical adaptations to molecular responses", Environ. Exp. Bot., Vol. 135, No. xx, pp. 1-12, 2017. https://doi.org/10.1016/j.envexpbot.2016.12.003
  27. M. Aldea, J. G. Hamilton, J. P. Resti, A. R. Zangerl, M. R. Berenbaum , and E. H. D eLUCIA, "Indirect effects of insect herbivory on leaf gas exchange in soybean", Plant, Cell Environ., Vol. 28, No. 3, pp. 402-411, 2005. https://doi.org/10.1111/j.1365-3040.2005.01279.x
  28. E.-C. Oerke, P. Frohling, and U. Steiner., "Thermographic assessment of scab disease on apple leaves", Precis. Agric., Vol. 12, No. 5, pp. 699-715, 2011. https://doi.org/10.1007/s11119-010-9212-3