DOI QR코드

DOI QR Code

Factors Affecting the Minimum Detectable Activity of Radioactive Noble Gases

방사성 노블가스 측정을 위한 최소검출방사능 산출의 조절인자

  • Received : 2018.03.19
  • Accepted : 2018.08.08
  • Published : 2018.09.30

Abstract

Anthropogenic radioactive noble gases formed by nuclear fission are significant indicators used to monitor the nuclear activity of neighboring countries. In particular, radioactive xenon, owing to its abundant generation and short half-life, can be used to detect nuclear testing, and radioactive krypton has been used as a tracer to monitor the reprocessing of nuclear fuels. Released radioactive noble gases are in the atmosphere at infinitesimal amounts due to their dilution in the air and their short half-life decay. Therefore, to obtain reliable and significant data when performing measurement of noble gases in the atmosphere, the minimum detectable activity (MDA) for noble gases should be defined as low as possible. In this study, the MDA values for radioactive xenon and krypton were theoretically obtained based on the BfS-IAR system by collecting both noble gases simultaneously. In addition, various MDA methods, confidence level and analysis conditions were suggested to reduce and optimize MDA with an assessment of the factors affecting MDA. The current investigation indicated that maximizing the pretreatment efficiency and performance maintenance of the counter were the most important aspects for Xe. In the case of Kr, since sample activities are much higher than those of Xe, it is possible to change the target MDA or to simplification of the analysis system.

핵분열로 인해 생성되는 방사성 노블가스는 주변국의 핵활동을 감시할 수 있는 중요한 지표 핵종이다. 특히 제논은 생성량이 많고 반감기가 짧아 핵실험 탐지에 적합하며 크립톤은 핵연료 재처리 탐지의 추적자로 활용되고 있다. 방출된 방사성 노블가스는 막대한 대기에 희석되어 농도가 감소하고 일부는 시간에 따라 방사능이 감쇠하기 때문에 대기 중에는 매우 극미량으로 존재하게 된다. 따라서 측정을 통해 의미 있는 데이터를 얻기 위해서는 가능한 낮은 수준의 MDA를 설정하는 것이 중요하다. 본 연구에서는 방사성 제논과 크립톤을 동시 포집 할 수 있는 장비인 BfS-IAR시스템을 활용하여 이론을 통해 MDA를 산출하였다. 또한 MDA 산출방식의 변화, 신뢰수준의 정도는 물론 계측 조건의 변화에 따른 영향을 확인하고 MDA를 저감하기 위한 방안들을 모색하였다. 그 결과 배경농도가 극미량인 제논의 경우 전처리과정의 효율화와 안정적인 계측 성능유지가 가장 중요한 요소로 판단되었으며, 크립톤의 경우 제논과 달리 시료의 방사능이 높기 때문에 MDA 재설정을 통한 분석조건이나 시스템 최적화를 통해 효율적인 분석을 수행할 수 있을 것으로 판단된다.

Keywords

References

  1. J.M. Shin, J.J. Park, M.S. Yang, S.Y. Joo, and S.W. Shin, "A State of the Art Report on Treatment Technology of Kr/Xe", Korea Atomic Energy Institute Report, 4-14, KAERI/AR-667/2003 (2003).
  2. D.A. Atwood, "Radionuclides in the Environment", 1st ed., 179-189, Wiley & Sons, New York (2013).
  3. W.N. Lee, Y.Y. Ji, S. Choi, Y.H. Cho, J.M. Lim, H.B. Kang, H. Lee, M.J. Kang, and G.S. Choi, "Operation and Technology Development of Radioactive Xenon and Krypton Detection Equipment", Korea Atomic Energy Institute Report, 3-15, KAERI/RR-3581/2012 (2013).
  4. D.K. Keum, H.S. Lee, H.J. Choi, H.S. Kang, W.N. Lee, and C.W. Lee, "Development of Atmospheric Kr-85 Analysis Technology", Korea Atomic Energy Institute Report, 1-7, KAERI/RR-2468/2004 (2004).
  5. P.R.J. Saey, A. Becker, L.E. De Geer, and G. Wotawa, "Radioxenon Isotopes: Created in an Underground Nuclear Explosion - Measured in a Verification Detector", Proc. Of Europe European Geosciences Union Assembly, Vol. 9, 09773, Vienna (2007).
  6. A. Janssens, J. Buysse, and E. Cottems, "The Measurement of Low-Level Atmospheric Krypton-85", Nucl. Instrum. Methods Phys. Res. A, 234(2), 335-343 (1985). https://doi.org/10.1016/0168-9002(85)90926-X
  7. J.O. Ro$\ss$, "Simulation of Atmospheric Krypton-85 Transport to Assess the Detectability of Clandestine Nuclear Reprocessing", Ph.D. Thesis, Universitat Hamburg (2010).
  8. P.R.J. Saey, A. Ringbom, T.W. Bowyer, M. Zahringer, M. Auer, A. Faanhof, C. Labuschagne, M.S. Al-Rashidi, U. Tippawan, and B. Verboomen, "Worldwide Measurements of Radioxenon Background Near Isotope Production Facilities, a Nuclear Power Plant and at Remote Sites: the ''EU/JA-II'' Project", J. Radioanal. Nucl. Chem., 296(2), 1133-1142 (2013). https://doi.org/10.1007/s10967-012-2025-2
  9. C.G. Doll, C.M. Sorensen, T.W. Bowyer, J.I. Friese, J.C. Hayes, E. Hmann, and R. Kephart., "Abatement of Xenon and Iodine Emissions from Medical Isotope Production Facilities", J. Environ. Radioact., 130, 33-43 (2014). https://doi.org/10.1016/j.jenvrad.2013.12.006
  10. Annual Report, Comprehensive Nuclear-Test-Ban Treaty Organization Report, 11-15, CTBT/ES/2015/5 (2015).
  11. S.A. Czyz, A.T. Farsoni, and L. Ranjbar, "A Prototype Detection System for Atmospheric Monitoring of Xenon Radioisotopes", Nucl. Instrum. Methods Phys. Res. A, 884, 64-69 (2018). https://doi.org/10.1016/j.nima.2017.10.044
  12. C.B. Sivels, J.I. McIntyre, T.W. Bowyer, M.B. Kalinowski, and S.A. Pozzi1. "A Review of the Developments of Radioxenon Detectors for Nuclear Explosion Monitoring", J. Radioanal. Nucl. Chem., 314(2), 829-841 (2017). https://doi.org/10.1007/s10967-017-5489-2
  13. W.N. Lee, S.D. Choi, H.R. Kim, G.H. Chung, Y.H. Cho, M.J. Kang, G.S. Choi, and C.W. Lee, "Study on the Estimation of Minimum Detectable Activity (MDA) in Atmospheric Radioxenon" Proc. Of the Korean Radioactive Waste Society Conference, Vol. 17, Incheon, 399-400 (2010).
  14. H. Stockburger, H. Sartorius, and A. Sittkus, "Measurement of the Krypton-85 and xenon-133 activity in the atmosphere", Zeitschrift fur Naturforschung A, 32(11), 1249-1253 (1977).
  15. Y. Igarashi, H. Sartorius, T. Miyao, W. Weiss, K. Fushimi, M. Aoyama, K. Hirose, and H.Y. Inoue, "85Kr and 133Xe Monitoring at MRI, Tsukuba and Its Importance", J. Environ. Radioact., 48(2), 191-202 (2000). https://doi.org/10.1016/S0265-931X(99)00076-4
  16. D.K. Keum, G.S. Choi, G.H. Chung, W.N. Lee, Y.H. Cho, and C.W. Lee, "Build up of Radioactive Krypton and Xenon Analysis System", Korea Atomic Energy Institute Report, 1-14, KAERI/RR-2933/2007 (2007).
  17. P. Häussinger, R. Glatthaar, W. Rhode, H. Kick, C. Benkmann, J. Weber, H.J. Wunschel, V. Stenke, E. Leicht, and H. Stenger, "Noble Gases", Ullmann's Encyclopedia of Industrial Chemistry, 24, 391-394, John Wiley and Sons, New York (2003).
  18. L. A. Currie, "Limits for Qualitative Detection and Quantitative Determination", Anal. Chem., 40(3), 586-593 (1968). https://doi.org/10.1021/ac60259a007
  19. M.H Lee, H.S. Lee, G.H. Hong, Y.H. Cho, and C.W. Lee, "Determination of Minimum Detectable Activity in Environmental Samples", J. Korean Asso. Radiat. Prot., 24(3), 171-184 (1999).
  20. B.S. Pasternack and N.H. Harley, "Detectable Limits for Radionuclides in the Analysis of Multi-component Gamma ray Spectrometer Data", Nucl. Instr. And Meth., 91(3), 533-540 (1971). https://doi.org/10.1016/S0029-554X(71)80035-6
  21. K. Weise, K. Hübel, E. Rose, M. Schläger, D. Schrammel, M. Taschne, and R. Michel. "Bayesian Decision Threshold, Detection Limit and Confidence Limits in Ionizing-Radiation Measurement", Radiat Prot Dosimetry., 121(1), 52-63 (2006). https://doi.org/10.1093/rpd/ncl095
  22. J.M. Kirkpatrick, R. Venkataraman, and B.M. Young, "Minimum Detectable Activity, Systematic Uncertainties, and the ISO 11929 Standard", J. Radioanal Nucl. Chem., 296(2), 1005-1010 (2013). https://doi.org/10.1007/s10967-012-2083-5
  23. S. Generoso, P. Achim, M. Morin, P. Gross, G. Le Petit, and C. Moulin, "Seasonal Variability of Xe-133 Global Atmospheric Background: Characterization and Implications for the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty", J. Geophys. Res. Atmos., 123(3), 1865-1882 (2018).
  24. J. Schulze, M. Auer, and R. Werzi, "Low Level Radioactivity Measurement in Support of the CTBTO", Appl. Radiat. Isot., 53(1-2), 23-30 (2000). https://doi.org/10.1016/S0969-8043(00)00182-2
  25. J. Bieringer, C. Schlosser, H. Sartorius, and S. Schmid, "Trace Analysis of Aerosol Bound Particulates and Noble Gases at the BfS in Germany", Appl. Radiat. Isot., 67(5), 672-677 (2009). https://doi.org/10.1016/j.apradiso.2009.01.008
  26. C. Schlosser, M. Konrad and S. Schmid, "85Kr Activity Determination in Tropospheric Air", International Foundation of the High Altitude Research Stations Jungfraujoch and Gornergrat (HFSJG), Activity Report 2016, 78-79 (2017).