References
- Tarascon, J. M. and Armand, M., "Issues and Challenges Facing Rechargeable Lithium Batteries," Nature, 414, 359-367(2001). https://doi.org/10.1038/35104644
- Armand, M. and Tarascon, J. M., "Building Better Batteries," Nature, 451, 652-627(2008). https://doi.org/10.1038/451652a
- Pacala, S. and Socolow, R., "Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies," Science, 305, 968-971(2004). https://doi.org/10.1126/science.1100103
- Jo, Y. J. and Lee, J. D., "Electrochemical Performance of Graph- ite/Silicon/Carbon Composites as Anode Materials for Lithiumion Batteries," Korean Chem. Eng. Res., 56(3), 320-326(2018). https://doi.org/10.9713/KCER.2018.56.3.320
- Ohzuku, T. and Ueda, A., "Why Transition Metal (di) Oxides are the Most Attractive Materials for Batteries," Solid State Ionics, 69, 201-211(1994). https://doi.org/10.1016/0167-2738(94)90410-3
-
Vu, D. L. and Lee, J. W., "Properties of
$LiNi_{0.8}Co_{0.1}Mn_{0.1}O_2$ as a High Energy Cathode Material for Lithium-ion Batteries," Korean J. Chem. Eng., 33(2), 514-526(2016). https://doi.org/10.1007/s11814-015-0154-3 - Ceder, G., Chiang, Y. M., Sadoway, D. R., Aydinol, M. K., Jang, Y. I. and Huang, B., "Identification of Cathode Materials for Lithium Batteries Guided by First-principles Calculations," Nature, 392, 694-696(1998). https://doi.org/10.1038/33647
-
Breger, J., Jiang, M., Dupre, N., Meng, Y. S., Shao-Horn, Y., Ceder, G. and Grey, C. P., "High-resolution X-ray Diffraction, DIFFaX, NMR and First Principles Study of Disorder in the
$Li_2MnO_3-Li[Ni_{1/2}Mn_{1/2}]O_2$ Solid Solution," J. Solid State Chem., 178, 2575-2585(2005). https://doi.org/10.1016/j.jssc.2005.05.027 -
Lee, M. H., Kang, Y. J., Myung, S. T. and Sun, Y. K., "Synthetic Optimization of
$Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ via Co-precipitation," Electrochim. Acta, 50, 939-948(2004). https://doi.org/10.1016/j.electacta.2004.07.038 -
Jung, S. K., Gwon, H., Hong, J., Park, K. Y., Seo, D. H., Kim, H., Hyun, J., Yang, W. and Kang, K., "Understanding the Degra- dation Mechanisms of
$LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ Cathode Material in Lithium Ion Batteries," Advanced Energy Materials, 4, 1300787 (2014). https://doi.org/10.1002/aenm.201300787 -
Xu, J., Chen, X., Wang, C., Yang, L., Gao, X., Zhou, Y., Xiao, K. and Xi, X., "Nano-
$Y_2O_3$ -coated$LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ Cathodes with Enhanced Electrochemical Stability under High Cut-off Voltage and High Temperature," Ceram. Int., 43, 11848-11854(2017). https://doi.org/10.1016/j.ceramint.2017.06.028 - Sun, Y. K., Noh, H. J. and Yoon, C. S., "Effect of Mn Content in Surface on the Electrochemical Properties of Core-Shell Structured Cathode Materials," J. Electrochem. Soc., 159, A1-A5(2012). https://doi.org/10.1149/2.037208jes
-
Cho, T. H., Park, S. M., Yoshio, M., Hirai, T. and Hedeshima, Y., "Effect of Synthesis Condition on the Structural and Electro- chemical Properties of
$Li[Ni_{1/3}Mn_{1/3}Co_{1/3}]O_2$ Prepared by Carbonate Co-precipitation Method," J. Power Sources, 142, 306-312(2005). https://doi.org/10.1016/j.jpowsour.2004.10.016 -
Ko, H. S., Kim, J. H., Wang, J. and Lee, J. D., "Co/Ti Co-substituted Layered
$LiNiO_2$ Prepared Using a Concentration Gradient Method as an Effective Cathode Material for Li-ion Battries," J. Power Sources, 372, 107-115(2017). https://doi.org/10.1016/j.jpowsour.2017.10.021 -
Patoux, S. and Doeff, M. M., "Direct Synthesis of
$LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ from Nitrate Precursors," Electrochem. Commun., 6, 767-772(2004). https://doi.org/10.1016/j.elecom.2004.05.024 -
Luo, X., Wang, X., Laio, L., Wang, X., Gamboa, S. and Sebastian, P. J., "Effects of Synthesis Conditions on the Structural and Electrochemical Properties of Layered
$Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ Cathode Material via the Hydroxide Co-precipitation Method LIB SCITECH," J. Power Sources, 161, 601-605(2006). https://doi.org/10.1016/j.jpowsour.2006.03.090 -
Reimers, J. N., Rossen, E., Jones, C. D. and Dahn, J. R., "Structure and Eletrochemistry of
$Li_xFe_yNi_{1-y}O_2$ ," Solid State Ionics, 61, 335-334(1993). https://doi.org/10.1016/0167-2738(93)90401-N -
Dahn, J. R., Fuller, E. W., Obrovac, M. and von Sacken, U., "Thermal Stability of
$Li_xCoO_2$ ,$Li_xNiO_2$ and${\lambda}-MnO_2$ and Consequences for the Safety of Li-ion Cells," Solid State Ionics, 69, 265-270(1994). https://doi.org/10.1016/0167-2738(94)90415-4 -
Park, B. C., Kim, H. B., Myung, S. T., Amine, K., Belharouak, I., Lee, S. M. and Sun, Y. K., "Improvement of Structural and Electrochemical Properties of
$AlF_3$ -coated$Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ Cathode Materials on High Voltage Region," J. Power Sources, 178, 826-831(2008). https://doi.org/10.1016/j.jpowsour.2007.08.034 -
Zheng, J., Yan, P., Estevez, L., Wang, C. and Zhang, J. G., "Effect of Calcination Temperature on the Electrochemical Properties of Nickel-rich
$LiNi_{0.76}Mn_{0.14}Co_{0.10}O_2$ Cathodes for Lithium-ion Batteries," Nano Energy, 49, 538-548(2018). https://doi.org/10.1016/j.nanoen.2018.04.077 -
Park, T. J., Lim, J. B. and Son, J. T., "Effect of Calcination Tem- perature of Size Controlled Microstructure of
$LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ Cathode for Rechargeable Lithium Battery," Bull. Korean Chem. Soc., 35, 357-364(2014). https://doi.org/10.5012/bkcs.2014.35.2.357
Cited by
- Electrochemical characteristics of lithium-excess cathode material (Li1+xNi0.9Co0.05Ti0.05O2) for lithium-ion batteries vol.36, pp.4, 2018, https://doi.org/10.1007/s11814-019-0248-4
- Effect of petroleum pitch coating on electrochemical performance of graphite as anode materials vol.36, pp.10, 2019, https://doi.org/10.1007/s11814-019-0354-3