DOI QR코드

DOI QR Code

The Effect of Calcination Temperature on the Layered Li1.05Ni0.9Co0.05Ti0.05O2 for Lithium-ion Battery

리튬이온전지용 층상 Li1.05Ni0.9Co0.05Ti0.05O2에 대한 소성 온도의 영향

  • Ko, Hyoung Shin (New Meterial R&D Center, Huayou New Energy Technology Co., Ltd.) ;
  • Park, Hyun Woo (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • 고형신 (화유신에너지 전지재료연구소) ;
  • 박현우 (충북대학교 화학공학과) ;
  • 이종대 (충북대학교 화학공학과)
  • Received : 2018.03.16
  • Accepted : 2018.07.31
  • Published : 2018.10.01

Abstract

In this study, the $Ni_{0.9}Co_{0.05}Ti_{0.05}(OH)_2$ precursor was prepared by the concentration gradient co-precipitation method. In order to overcome the structural change due to oxygen desorption in the cathode active material with high nickel content, the physical and electrochemical analysis of the cathode active material according to the calcination temperature were investigated. Physical properties of $Li_{1.05}Ni_{0.9}Co_{0.05}Ti_{0.05}O_2$ were analyzed by FE-SEM, XRD and TGA. The electrochemical performance of the coin cell using a cathode active material and $LiPF_6$(EC:EMC=1:2 vol%) electrolyte was evaluated by the initial charge/discharge efficiency, cycle retention, and rate capabilities. As a result, the initial capacity and initial efficiency of cathode materials were excellent with 244.5~247.9 mAh/g and 84.2~85.8% at the calcination temperature range of $750{\sim}760^{\circ}C$. Also, the capacity retention exhibited high stability of 97.8~99.1% after 50cycles.

본 연구에서는 농도구배형 공침합성법을 통해 $Ni_{0.9}Co_{0.05}Ti_{0.05}(OH)_2$ 전구체를 제조하였다. 높은 니켈함량의 양극 활물질에서 나타나는 산소 탈리에 따른 구조변화문제를 극복하기 위하여 소성온도 변화에 따른 양극 활물질의 물리적, 전기화학적 분석방법을 사용하여 조사하였다. $Li_{1.05}Ni_{0.9}Co_{0.05}Ti_{0.05}O_2$의 물리적 특성은 FE-SEM, XRD, TGA를 이용하여 분석하였다. 양극 활물질과 $LiPF_6$(EC:EMC=1:2 vol%) 전해질을 사용하여 제조한 코인셀의 전기화학적 성능은 초기 충 방전 효율, 사이클 유지율 및 율속 테스트를 통해 분석하였다. 제조된 양극재의 초기 충전 용량 및 초기효율은 소성온도 $750{\sim}760^{\circ}C$에서 244.5~247.9 mAh/g, 84.2~85.8%로 우수하였다. 또한 용량 보존율은 50사이클 후에 97.8~99.1%의 높은 안정성을 나타내었다.

Keywords

References

  1. Tarascon, J. M. and Armand, M., "Issues and Challenges Facing Rechargeable Lithium Batteries," Nature, 414, 359-367(2001). https://doi.org/10.1038/35104644
  2. Armand, M. and Tarascon, J. M., "Building Better Batteries," Nature, 451, 652-627(2008). https://doi.org/10.1038/451652a
  3. Pacala, S. and Socolow, R., "Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies," Science, 305, 968-971(2004). https://doi.org/10.1126/science.1100103
  4. Jo, Y. J. and Lee, J. D., "Electrochemical Performance of Graph- ite/Silicon/Carbon Composites as Anode Materials for Lithiumion Batteries," Korean Chem. Eng. Res., 56(3), 320-326(2018). https://doi.org/10.9713/KCER.2018.56.3.320
  5. Ohzuku, T. and Ueda, A., "Why Transition Metal (di) Oxides are the Most Attractive Materials for Batteries," Solid State Ionics, 69, 201-211(1994). https://doi.org/10.1016/0167-2738(94)90410-3
  6. Vu, D. L. and Lee, J. W., "Properties of $LiNi_{0.8}Co_{0.1}Mn_{0.1}O_2$ as a High Energy Cathode Material for Lithium-ion Batteries," Korean J. Chem. Eng., 33(2), 514-526(2016). https://doi.org/10.1007/s11814-015-0154-3
  7. Ceder, G., Chiang, Y. M., Sadoway, D. R., Aydinol, M. K., Jang, Y. I. and Huang, B., "Identification of Cathode Materials for Lithium Batteries Guided by First-principles Calculations," Nature, 392, 694-696(1998). https://doi.org/10.1038/33647
  8. Breger, J., Jiang, M., Dupre, N., Meng, Y. S., Shao-Horn, Y., Ceder, G. and Grey, C. P., "High-resolution X-ray Diffraction, DIFFaX, NMR and First Principles Study of Disorder in the $Li_2MnO_3-Li[Ni_{1/2}Mn_{1/2}]O_2$ Solid Solution," J. Solid State Chem., 178, 2575-2585(2005). https://doi.org/10.1016/j.jssc.2005.05.027
  9. Lee, M. H., Kang, Y. J., Myung, S. T. and Sun, Y. K., "Synthetic Optimization of $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ via Co-precipitation," Electrochim. Acta, 50, 939-948(2004). https://doi.org/10.1016/j.electacta.2004.07.038
  10. Jung, S. K., Gwon, H., Hong, J., Park, K. Y., Seo, D. H., Kim, H., Hyun, J., Yang, W. and Kang, K., "Understanding the Degra- dation Mechanisms of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ Cathode Material in Lithium Ion Batteries," Advanced Energy Materials, 4, 1300787 (2014). https://doi.org/10.1002/aenm.201300787
  11. Xu, J., Chen, X., Wang, C., Yang, L., Gao, X., Zhou, Y., Xiao, K. and Xi, X., "Nano-$Y_2O_3$-coated $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ Cathodes with Enhanced Electrochemical Stability under High Cut-off Voltage and High Temperature," Ceram. Int., 43, 11848-11854(2017). https://doi.org/10.1016/j.ceramint.2017.06.028
  12. Sun, Y. K., Noh, H. J. and Yoon, C. S., "Effect of Mn Content in Surface on the Electrochemical Properties of Core-Shell Structured Cathode Materials," J. Electrochem. Soc., 159, A1-A5(2012). https://doi.org/10.1149/2.037208jes
  13. Cho, T. H., Park, S. M., Yoshio, M., Hirai, T. and Hedeshima, Y., "Effect of Synthesis Condition on the Structural and Electro- chemical Properties of $Li[Ni_{1/3}Mn_{1/3}Co_{1/3}]O_2$ Prepared by Carbonate Co-precipitation Method," J. Power Sources, 142, 306-312(2005). https://doi.org/10.1016/j.jpowsour.2004.10.016
  14. Ko, H. S., Kim, J. H., Wang, J. and Lee, J. D., "Co/Ti Co-substituted Layered $LiNiO_2$ Prepared Using a Concentration Gradient Method as an Effective Cathode Material for Li-ion Battries," J. Power Sources, 372, 107-115(2017). https://doi.org/10.1016/j.jpowsour.2017.10.021
  15. Patoux, S. and Doeff, M. M., "Direct Synthesis of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ from Nitrate Precursors," Electrochem. Commun., 6, 767-772(2004). https://doi.org/10.1016/j.elecom.2004.05.024
  16. Luo, X., Wang, X., Laio, L., Wang, X., Gamboa, S. and Sebastian, P. J., "Effects of Synthesis Conditions on the Structural and Electrochemical Properties of Layered $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ Cathode Material via the Hydroxide Co-precipitation Method LIB SCITECH," J. Power Sources, 161, 601-605(2006). https://doi.org/10.1016/j.jpowsour.2006.03.090
  17. Reimers, J. N., Rossen, E., Jones, C. D. and Dahn, J. R., "Structure and Eletrochemistry of $Li_xFe_yNi_{1-y}O_2$," Solid State Ionics, 61, 335-334(1993). https://doi.org/10.1016/0167-2738(93)90401-N
  18. Dahn, J. R., Fuller, E. W., Obrovac, M. and von Sacken, U., "Thermal Stability of $Li_xCoO_2$, $Li_xNiO_2$ and ${\lambda}-MnO_2$ and Consequences for the Safety of Li-ion Cells," Solid State Ionics, 69, 265-270(1994). https://doi.org/10.1016/0167-2738(94)90415-4
  19. Park, B. C., Kim, H. B., Myung, S. T., Amine, K., Belharouak, I., Lee, S. M. and Sun, Y. K., "Improvement of Structural and Electrochemical Properties of $AlF_3$-coated $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ Cathode Materials on High Voltage Region," J. Power Sources, 178, 826-831(2008). https://doi.org/10.1016/j.jpowsour.2007.08.034
  20. Zheng, J., Yan, P., Estevez, L., Wang, C. and Zhang, J. G., "Effect of Calcination Temperature on the Electrochemical Properties of Nickel-rich $LiNi_{0.76}Mn_{0.14}Co_{0.10}O_2$ Cathodes for Lithium-ion Batteries," Nano Energy, 49, 538-548(2018). https://doi.org/10.1016/j.nanoen.2018.04.077
  21. Park, T. J., Lim, J. B. and Son, J. T., "Effect of Calcination Tem- perature of Size Controlled Microstructure of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ Cathode for Rechargeable Lithium Battery," Bull. Korean Chem. Soc., 35, 357-364(2014). https://doi.org/10.5012/bkcs.2014.35.2.357

Cited by

  1. Electrochemical characteristics of lithium-excess cathode material (Li1+xNi0.9Co0.05Ti0.05O2) for lithium-ion batteries vol.36, pp.4, 2018, https://doi.org/10.1007/s11814-019-0248-4
  2. Effect of petroleum pitch coating on electrochemical performance of graphite as anode materials vol.36, pp.10, 2019, https://doi.org/10.1007/s11814-019-0354-3