마이크로 공정을 이용한 테라헤르츠 첨단 진공 소자 개발 현황 및 향후 전망

  • Published : 2018.09.30

Abstract

Keywords

References

  1. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveria, and D. Zimdars, "THz imaging and sensing for security applications - explosives, weapons and drugs", Semicond. Sci. Technol., vol. 20, no. 7, pp. S266-S280, Jul. 2005, DOI: 10.1088/0268-1242/20/7/018.
  2. P. H. Siegel, "Terahertz technology in biology and medicine", IEEE Trans. Microw. Theory Tech., vol. 52, no. 10, pp. 2438-2447, 2004, DOI: 10.1109/TMTT.2004.835916.
  3. C. Paoloni, L. Yue, X. Tang, F. Zhang, B. Popovic, L. Himes, R. Barchfield, D. Gamzina, R. Letizia, M. Mineo, and N. C. Luhmann, "THz backward-wave oscillators for plasma diagnostic in nuclear fusion", IEEE Trans. Plasma Sci., vol. 44, no. 4, pp. 369-376, Apr. 2016, DOI: 10.1109/TPS.2016.2541119.
  4. H. B. Wallace, "Development of a video SAR for FMV through clouds", Proc. SPIE Open Archit./Open Bus. Model Net-Centric Syst. Defense Transf., vol. 9479, May 2015, p. 94790L, 2015, DOI: 10.1117/12.2181420.
  5. G. Piro, K. Yang, G. Boggia, N. Chopra, L. A. Grieco, and A. Alomainy, "Terahertz communications in human tissues at the nanoscale for healthcare applications", IEEE Trans. Nanotechnol., vol. 14, no. 3, pp. 404-406, May 2015, DOI: 10.1109/TNANO.2015.2415557.
  6. M. T. Alam, M. J. Siddiq, G. H. Bernstein, M. Niemier, W. Porod, and X. S. Hu, "On-chip clocking for nanomagnet logic devices", IEEE Trans. Nanotechnol., vol. 9, no. 3, pp. 348-351, May 2010, DOI: 10.1109/TNANO.2010.2041248.
  7. L. Yu, H. Pajouhi, M. R. Nelis, J. F. Rhoads, and S. Mohammadi, "Tunable, dual-gate, silicon-on-insulator (SOI) nanoelectromechanical resonators", IEEE Trans. Nanotechnol., vol. 11, no. 6, pp. 1093-1099, Nov. 2012, DOI: 10.1109/TNANO.2012.2212028.
  8. L. Zhang, J. Dong, and P. H. Cohen, "Material-insensitive feature depth control and machining force reduction by ultrasonic vibration in AFM-based nanomachining", IEEE Trans. Nanotechnol., vol. 12, no. 5, pp. 743-750, Sep. 2013, DOI: 10.1109.2013.2273272. https://doi.org/10.1109/TNANO.2013.2273272
  9. V. P. Verma, H. H. Jeon, S. H. Hwang, M. H. Jeon, and W. B. Choi, "Enhanced electrical conductance of ZnO nanowire FET by nondestructive surface cleaning", IEEE Trans. Nanotechnol., vol. 7, no. 6, pp. 782-786, Nov. 2008, DOI: 10.1109/TNANO.2008.2005186.
  10. S. J. Bauman, E. C. Novak, D. T. Debu, D. Natelson, and J. B. Herzog, "Fabrication of sub-lithography-limited structures via nanomasking technique for plasmonic enhancement applications", IEEE Trans. Nanotechnol., vol. 14, no. 5, pp. 790-793, Sep. 2015, DOI: 10.1109/TNANO.2015.2457235.
  11. R. L. Ives, "Microfabrication of high-frequency vacuum electron devices", IEEE Trans. Plasma Sci., vol. 32, no. 3, pp. 1277-1291, 2004, DOI: 10.1109/TPS.2004.827595.
  12. J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, "Vacuum electronic high power terahertz sources", IEEE Trans. Terahertz Sci. Technol., vol. 1, no. 1, pp. 54-75, 2011, DOI: 10.1109/TTHZ.2011.2151610.
  13. A. S. Gilmour, Jr., Microwave Tubes, Arthech House Inc., 685 Canton St., Norwood, MA 02062, 1986.
  14. D. Gamzina, L. G. Himes, R. Barchfeld, Y. Zheng, B. K. Popovic, C. Paoloni, E. M. Choi, and N. C. Luhmann, "Nanoscale surface roughness effects on THz vacuum electron device performance", IEEE Trans. Nanotechnol., vol. 15, no. 1, pp. 85-93, Jan. 2016. https://doi.org/10.1109/TNANO.2015.2503984
  15. V. L. Granatstein, R. K. Parker, and C. M. Armstrong, "Vacuum electronics at the dawn of the twenty-first century", Proc. IEEE, vol. 87, pp. 702-716, 1999. https://doi.org/10.1109/5.757251
  16. Available: http://www.milsatmagazine.com/story.php?number=1452989667.
  17. C. D. Joye, A. M. Cook, J. P. Calame, D. K. Abe, A. N. Vlasov, I. A. Chernyavskiy, K. T. Nguyen, E. L. Wright, D. E. Pershing, T. Kimura, M. Hyttinen, and B. Levush, "Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UVLIGA", IEEE. Trans. Electron Devices, vol. 61, no. 6, Jun. 2014.
  18. M. Matschu, N. B. Larsen, and H. Bruus, "All-polymer microfluidic systems with integrated nanostructures for cell handling", Kgs. Lyngby, Denmark: Technical University of Denmark, 2011.
  19. J. C. Tucek, M. A. Basten, D. A. Gallagher, and K. E. Kreischer, "Northrop grumman operation of a compact 1.03 THz power amplifier", Proceedings of the International Vacuum Electronics Conference (IVEC), 2016, Monterey, US.
  20. J. Feng, Y. Hu, J. Cai, S Ma, and X. Wu, "Progress of W-band 10W CW TWT", Proceedings of the International Vacuum Electronics Conference (IVEC), 2010, Monterey, US.
  21. A. Baig, D. Gamzina, T. Kimura, J. Atkinson, C. Domier, B. Popovic, L. Himes, R. Barchfeld, M. Field, and N. C. Luhmann, "Performance of a nano-cnc machined 220-GHz traveling wave tube amplifier", IEEE. Trans. Electron Devices, vol. 64, no. 5, May 2017.
  22. J. Feng, Y. Tang, D. Gamzina, X. Li, B. Popovic, M. Gonzalez, L. Himes, R. Barchfeld, H. Li, P. Pan, R. Letizia, C. Paoloni, and N. C. Luhmann, "Fabrication of a 0.346-THz BWO for plasma diagnostics", IEEE. Trans. Electron Devices, vol. 65, no. 6, Jun. 2018.
  23. I. Lee, A. Sawant, J. W, Shin, and E. M. Choi, "Self-driving energy recirculating micromachined G-band folded waveguide traveling-wave tube oscillator", IEEE. Trans. Electron Devices, vol. 65, no. 8, Aug. 2018.
  24. W. Choi, I. Lee, and E. Choi, "Design and fabrication of a 300 GHz modified sine waveguide traveling-wave tube using a nanocomputer numerical control machine", IEEE Trans. Electron Devices, vol. 64, no. 7. Jul. 2017.
  25. I. Lee, W. Choi, J. Shin, and E. M. Choi, "Microscopic analyses of electrical conductivity of micromachined folded waveguides based on surface roughness measurment for terahertz vacuum electron device", IEEE Trans. THz. Sci. and Techn, Under Revision.
  26. H. Jang, J. J. Choi, and J. H. Kim, "Experiments on sub-terahertz folded waveguide traveling wave tubes", Proceedings of the International Vacuum Electronics Conference (IVEC), 2017, London, UK.