반도체 테라헤르츠 집적회로 기술 동향 및 이미징 응용

  • Published : 2018.09.30

Abstract

Keywords

References

  1. P. H. Siegel, "Terahertz technology in biology and medicine", IEEE Trans. Microw. Theory Techn., vol. 52, no. 10, pp. 2438-2447, Oct. 2004. https://doi.org/10.1109/TMTT.2004.835916
  2. K. B. Cooper, G. Chattopadhyay, "Submillimeter-wave radar: Solid-state system design and applications", IEEE Microw. Mag., vol. 15, no. 7, pp. 51-67, Nov.-Dec. 2014. https://doi.org/10.1109/MMM.2014.2356092
  3. T. Schneider, A. Wiatrek, S. Preussler, M. Grigat, and R.-P. Braun, "Link budget analysis for terahertz fixed wireless links", IEEE Trans. Terahertz Science and Technol., vol. 2, no. 2, pp. 250-256, Mar. 2012. https://doi.org/10.1109/TTHZ.2011.2182118
  4. K. Ajito, Y. Ueno, "THz chemical imaging for biological applications", IEEE Trans. Terahertz Science and Technol., vol. 1, no. 1, pp. 293-300, Sep. 2011. https://doi.org/10.1109/TTHZ.2011.2159562
  5. K. Schmalz, N. Rothbart, P. F.-X. Neumaier, J. Borngraber, H.-W. Hubers, and D. Kissinger, "Gas spectroscopy system for breath analysis at mm-wave/THz using SiGe BiCMOS circuits", IEEE Trans. Microw. Theory Techn., vol. 65, no. 5, pp. 1807-1818, May 2017. https://doi.org/10.1109/TMTT.2017.2650915
  6. M. Seo, M. Urteaga, J. Hacker, A. Young, Z. Griffith, V. Jain, R. Pierson, P. Rowell, A. Skalare, A. Peralta, R. Lin, D. Lin, and M. Rodwell, "InP HBT IC technology for terahertz frequencies: Fundamental oscillators up to 0.57 THz", IEEE J. Solid-State Circuits, vol. 46, no. 10, pp. 2203-2214, Oct. 2011. https://doi.org/10.1109/JSSC.2011.2163213
  7. J. Yun, D. Yoon, H. Kim, and J.-S. Rieh, "300-GHz InP HBT oscillators based on common-base cross-coupled topology", IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, pp. 3053-3064, Dec. 2014. https://doi.org/10.1109/TMTT.2014.2364608
  8. J. Yun, J. Kim, D. Yoon, and J.-S. Rieh, "645-GHz InP heterojunction bipolar transistor harmonic oscillator", Electron. Lett., vol. 53, no. 22, pp. 1475-1477, Oct. 2017. https://doi.org/10.1049/el.2017.2615
  9. F. Ahmed, M. Furqan, B. Heinemann, and A. Stelzer, "0.3-THz SiGe-based high-efficiency push-push VCOs with > 1-mW peak output power employing common-mode impedance enhancement", IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1384-1398, Mar. 2018. https://doi.org/10.1109/TMTT.2017.2767593
  10. E. Ojefors, B. Heinemann, and U. R. Pfeiffer, "Active 220-and 325-GHz frequency multiplier chains in an SiGe HBT technology", IEEE Trans. Microw. Theory Techn., vol. 59, no. 5, pp. 1311-1318, May 2011. https://doi.org/10.1109/TMTT.2011.2114364
  11. J. Yun, D. Yoon, S. Jung, M. Kaynak, B. Tillack, and J.-S. Rieh, "Two 320 GHz signal sources based on SiGe HBT technology", IEEE Microw. Compon. Lett., vol. 25, no. 3, pp. 178-180, Mar. 2015. https://doi.org/10.1109/LMWC.2015.2391011
  12. J. Grzyb, K. Statnikov, N. Sarmah, B. Heinemann, and U. R. Pfeiffer, "A 210-270-GHz circularly polarized FMCW radar with a single-lens coupled SiGe HBT chip", IEEE Trans. THz Sci. Technol., vol. 6, no. 6, pp. 771-783, Nov. 2016. https://doi.org/10.1109/TTHZ.2016.2602539
  13. Y. Yang, O. D. Gurbuz, and G. M. Rebeiz, "An eight-element 370-410-GHz phased-array transmitter in 45-nm CMOS SOI with peak EIRP of 8-8.5 dBm", IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4241-4249, Dec. 2016. https://doi.org/10.1109/TMTT.2016.2613850
  14. S. V. Thyagarajan, S. Kang, and A. M. Niknejad, "A 240 GHz fully integrated wideband QPSK receiver in 65 nm CMOS", IEEE J. Solid-State Circuits, vol. 50, no. 10, pp. 2268-2280, Oct. 2015. https://doi.org/10.1109/JSSC.2015.2467216
  15. N. Sarmah, J. Grzyb, K. Statnikov, S. Malz, P. R. Vazquez, W. Foerster, B. Heinemann, and U. R. Pfeiffer, "A fully integrated 240-GHz direct-conversion quadrature transmitter and receiver chipset in SiGe technology", IEEE Trans. Microw. Theory Techn., vol. 64, no. 2, pp. 562-574, Feb. 2016. https://doi.org/10.1109/TMTT.2015.2504930
  16. D. Yoon, J. Kim, J. Yun, M. Kaynak, B. Tillack, and J.-S. Rieh, "300-GHz direct and heterodyne active imagers based on 0.13-${\mu}m$ SiGe HBT technology", IEEE Trans. Terahertz Sci. Technol., vol. 7, no. 5, pp. 536-545, Sep. 2017. https://doi.org/10.1109/TTHZ.2017.2715419
  17. M. H. Eissa, A. Malignaggi, R. Wang, M. Elkhouly, K. Schmalz, A. C. Ulusoy, and D. Kissinger, "Wideband 240-Hz transmitter and receiver in BiCMOS technology with 25-Gbit/s data rate", to appear in IEEE J. Solid-State Circuits, 2018.
  18. J. Yun, S. J. Oh, K. Song, D. Yoon, H. Y. Son, Y. Choi, Y.-M. Huh, and J.-S. Rieh, "Terahertz reflection-mode biological imaging based on InP HBT source and detector", IEEE Trans. Terahertz Science and Technol., vol. 7, no. 3, pp. 274-283, May 2017. https://doi.org/10.1109/TTHZ.2017.2673549
  19. M. Rodwell, E. Lind, Z. Griffith, S. R. Bank, A. M. Crook, U. Singisetti, M. Wistey, G. Burek, and A. C. Gossard, "Frequency limits of InP-based integrated circuits", in Proc. IEEE Int. Conf. Indium Phosphide Related Mater., pp. 9-13, 2007.
  20. D. Yoon, K. Song, J. Kim, M. Kaynak, B. Tillack, and J.-S. Rieh, "A D-band active imager in a SiGe HBT technology", J. Infrared, Millimeter, Terahertz Waves, vol. 36, no. 4, pp. 335-349, Apr. 2015. https://doi.org/10.1007/s10762-014-0137-1
  21. S. J. Oh, S.-H. Kim, Y. B. Ji, K. Jeong, Y. Park, J. Yang, D. W. Park, S. K. Noh, S.-G. Kang, Y.-M. Huh, J.-H. Son, and J.-S. Suh, "Study of freshly excised brain tissues using terahertz imaging", Biomed. Opt. Exp., vol. 5, no. 8, pp. 2837-2842, Jul. 2014. https://doi.org/10.1364/BOE.5.002837
  22. J. Kim, D. Yoon, J. Yun, K. Song, M. Kaynak, B. Tillack, and J.-S. Rieh, "Three-dimensional terahertz tomography with transistor-based signal-source and detector circuits operating near 300 GHz", IEEE Trans. Terahertz Sci. Technol., vol. 8, no. 5, pp. 482-491, Sep. 2018. https://doi.org/10.1109/TTHZ.2018.2851542