References
- Lee, P.W., Eom, Y.G., Chung, Y.J. 1988. The distribution and type of crystals in woods of Ginkgo Max. Journal of the Korean Wood Science and Technology 16(3): 1-4.
- Azizi Samir, M. A. S., Alloin, F., Dufresne, A. 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2): 612-626. https://doi.org/10.1021/bm0493685
- Candido, R. G., Godoy, G. G., Goncalves, A. R. 2017. Characterization and application of cellulose acetate synthesized from sugarcane bagasse. Carbohydrate polymers 167: 280-289. https://doi.org/10.1016/j.carbpol.2017.03.057
- Chun, S. J., Choi, E. S., Lee, E. H., Kim, J. H., Lee, S. Y., Lee, S. Y. 2012. Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. Journal of Materials Chemistry 22(32): 16618-16626. https://doi.org/10.1039/c2jm32415f
- Claro, P. I. C., Neto, A. R. S., Bibbo, A. C. C., Mattoso, L. H. C., Bastos, M. S. R.,, Marconcini, J. M. 2016. Biodegradable blends with potential use in packaging: a comparison of PLA/chitosan and PLA/cellulose acetate films. Journal of Polymers and the Environment 24(4): 363-371. https://doi.org/10.1007/s10924-016-0785-4
- Dong, H., Strawhecker, K. E., Snyder, J. F., Orlicki, J. A., Reiner, R. S., Rudie, A. W. 2012. Cellulose nanocrystals as a reinforcing material for electrospun poly (methyl methacrylate) fibers: Formation, properties and nanomechanical characterization. Carbohydrate Polymers 87(4): 2488-2495. https://doi.org/10.1016/j.carbpol.2011.11.015
- Dufresne, A. 2008. Polysaccharide nano crystal reinforced nanocomposites. Canadian Journal of Chemistry 86(6): 484-494. https://doi.org/10.1139/v07-152
- Dumitriu, C., Voicu, S. I., Muhulet, A., Nechifor, G., Popescu, S., Ungureanu, C., ... Pirvu, C. 2018. Production and characterization of cellulose acetate/titanium dioxide nanotubes membrane fraxiparinized through polydopamine for clinical applications. Carbohydrate polymers 181: 215-223. https://doi.org/10.1016/j.carbpol.2017.10.082
- Gutierrez, M. C., De Paoli, M. A., Felisberti, M. I. 2012. Biocomposites based on cellulose acetate and short curaua fibers: Effect of plasticizers and chemical treatments of the fibers. Composites Part A: Applied Science and Manufacturing 43(8): 1338-1346. https://doi.org/10.1016/j.compositesa.2012.03.006
- Gwon, J. G., Cho, H. J., Lee, D., Choi, D. H., Lee, S., Wu, Q., Lee, S. Y. 2018. Physicochemical and mechanical properties of polypropylene-cellulose nanocrystal nanocomposites: Effects of manufacturing process and chemical grafting. BioResources 13(1): 1619-1636.
- Gwon, J. G., Cho, H. J., Chun, S. J., Lee, S., Wu, Q., Li, M. C., Lee, S. Y. 2016. Mechanical and thermal properties of toluene diisocyanate-modified cellulose nanocrystal nanocomposites using semi-crystalline poly (lactic acid) as a base matrix. RSC Advances 6(77): 73879-73886. https://doi.org/10.1039/C6RA10993D
- Gwon, J. G., Cho, H. J., Chun, S. J., Lee, S., Wu, Q., Lee, S. Y. 2016. Physiochemical, optical and mechanical properties of poly (lactic acid) nanocomposites filled with toluene diisocyanate grafted cellulose nanocrystals. RSC Advances 6(12): 9438-9445. https://doi.org/10.1039/C5RA26337A
- Jo, Y. J., Cho, H. J., Chun, S. J., Lee, S. Y. 2015. Mechanical and thermal properties of hydroxypropyl cellulose/TEMPO-Oxidized cellulose nanofibril composite films. Journal of Korean Wood Science Technology 43(6): 740-745. https://doi.org/10.5658/WOOD.2015.43.6.740
- Korea Textile Development Instute, Textile information team. 2012. Development trend of thermoplastic cellulose fibers
- Kurokawa, N., Kimura, S., Hotta, A. 2018. Mechanical properties of poly (butylene succinate) composites with aligned cellulose-acetate nanofibers. Journal of Applied Polymer Science 135(24): 45429. https://doi.org/10.1002/app.45429
- Leite, L. S. F., Battirola, L. C., da Silva, L. C. E., Goncalves, M. D. C. 2016. Morphological investigation of cellulose acetate/cellulose nanocrystal composites obtained by melt extrusion. Journal of Applied Polymer Science 133(44).
- Liu, C., Li, X., Liu, T., Liu, Z., Li, N., Zhang, Y., ... Feng, X. 2016. Microporous CA/PVDF membranes based on electrospun nanofibers with controlled crosslinking induced by solvent vapor. Journal of Membrane Science 512: 1-12. https://doi.org/10.1016/j.memsci.2016.03.062
- Ljungberg, N., Cavaille, J. Y., Heux, L. 2006. Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47(18): 6285-6292. https://doi.org/10.1016/j.polymer.2006.07.013
- Majoinen, J., Walther, A., McKee, J. R., Kontturi, E., Aseyev, V., Malho, J. M., Ikkala, O. 2011. Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12(8): 2997-3006. https://doi.org/10.1021/bm200613y
- Masruchin, N., & Park, B. D., 2015. Manipulation of Surface Carboxyl Content on TEMPO-Oxidized Cellulose Fibrils. Journal of Korean Wood Science Technology 43(5): 613-627. https://doi.org/10.5658/WOOD.2015.43.5.613
- Moon, R. J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J. 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews 40(7): 3941-3994. https://doi.org/10.1039/c0cs00108b
- Park, C. W., Han, S. Y., Lee, S. H., 2016. Size fractionation of cellulose nanofibers by settling method and their morphology. Journal of Korean Wood Science Technology 44(3): 398-405. https://doi.org/10.5658/WOOD.2016.44.3.398
-
Sukul, M., Min, Y. K., Lee, S. Y., Lee, B. T. 2015. Osteogenic potential of simvastatin loaded gelatin-nanofibrillar cellulose-
${\beta}$ tricalcium phosphate hydrogel scaffold in critical-sized rat calvarial defect. European Polymer Journal 73: 308-323. https://doi.org/10.1016/j.eurpolymj.2015.10.022