DOI QR코드

DOI QR Code

원자력발전소의 단순화 된 실증적 지진감쇄 관계

Simple Empirical Attenuation Relationship for Potential Nuclear Power Plant Sites

  • Tanwa, Kankang (Electricity Generating Authority of Thailand) ;
  • Eric, Yee (Dept. NPP Engineering, KEPCO International Nuclear Graduate School (KINGS))
  • 투고 : 2018.07.13
  • 심사 : 2018.09.15
  • 발행 : 2018.09.30

초록

감쇠식을 이용한 지진재해평가는 다양한 사회기반시설을 대상으로 한 프로젝트에 널리 수행된다. 이에 따라, 다양한 지반 조건에서의 최대지반가속도 예측을 위한 수많은 감쇠식과 관련 연구들이 수십 년에 걸쳐 이루어졌다. 하지만 기존에 제시된 대부분의 감쇠식들은 일반적으로 토층 상부 30m에 대한 평균 전단파 속도를 지반 분류의 기준으로 적용하여 다양한 지반 조건에서의 지진 규모나 최대지반가속도를 예측할 수 있도록 제시되어 터널이나 원자력 발전소와 같이 기반암을 기초로 하여 건설되는 특수한 유형의 사회기반시설물에 적용하기에는 불확실성을 지니고 있었다. 본 연구에서는 일본에서 측정된 데이터를 기반으로 암반 조건에서의 최대지반가속도 예측이 가능한 개선된 상관관계를 제시하였으며, 산출된 결과를 기존에 제시된 감쇠식을 통해 계산된 결과와 비교하였다. 분석결과, 기존에 제시된 감쇠식들을 통해 최대지반가속도를 예측할 경우, 200km 미만의 거리 내에 위치한 암반지역에서의 최대지반가속도를 상대적으로 과소 예측 하는 것으로 나타났다.

Seismic hazard assessments are performed on a variety of infrastructure projects. One component of a seismic hazard assessment is the attenuation relationship. Several attenuation relationships have been developed over the decades to predict peak ground acceleration under a variety of site conditions. For example, many attenuation relationships were designed to estimate peak ground acceleration, as well as other intensity measures, under a variety of soil conditions, mostly using the average shear wave velocity for the upper 30 m of earth material as a classification scheme. However, certain types of infrastructure, such as tunnels and nuclear power plants, are typically founded on and in bedrock. Using data from Japan, we developed a simple correlation to estimate peak ground acceleration for rock sites and compare the results from another popular attenuation relationship. Results indicate the popular attenuation relationship to be less than the proposed model for distances less than 200 km.

키워드

참고문헌

  1. Abrahamson, N. and Silva, W. (2008), "Summary of the abrahamson and silva nga ground-motion relations", Earthquake Spectra, Vol. 24, Issue s1, pp.67-97. https://doi.org/10.1193/1.2924360
  2. Aoi, S., Kunugi, T., and Fujiwara, H. (2004), "Strong-motion seismograph network operated by nied: k-net and kik-net", Journal of Japan Association for Earthquake Engineering, Vol.4, Issue 3, pp.65-74. https://doi.org/10.5610/jaee.4.3_65
  3. Boore, D.M. and Atkinson, G.M. (2008), "Ground-motion prediction equations for the average horizontal component of pga, pgv, and 5%-damped psa at spectral periods between 0.01 s and 10.0 s", Earthquake Spectra, Vol.24, Issue s1, pp.99-138. https://doi.org/10.1193/1.2830434
  4. Bozorgnia, Y., Abrahamson, N.A., Al Atik, L., Ancheta, T.D., Atkinson, G.M., Baker, J.W., Baltay, A., Boore, D.M., Campbell, K.W., Chiou, B.S.-J., Darragh, R., Day, S., Donahue, J., Graves, R.W., Gregor, N., Hanks, T., Idriss, I.M., Kamai, R., Kishida, T., Kottke, A., Mahin, S.A., Rezaeian, S., Rowshandel, B., Seyhan, E., Shahi, S., Shantz, T., Silva, W., Spudich, P., Stewart, J.P, Watson-Lamprey, J., Wooddell, K., and Youngs R. (2014), "Ngawest2 research project", Earthquake Spectra Vol.30, Issue 3, pp. 973-987. https://doi.org/10.1193/072113EQS209M
  5. Campbell, K.W. and Bozorgnia, Y., (2008), "NGA ground motion model for the geometric mean horizontal component of pga, pgv, pgd and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10s", Earthquake Spectra, Vol.24, Issue s1, pp.139-171. https://doi.org/10.1193/1.2857546
  6. Chiou, B.S.-J. and Youngs, R.R. (2008), "An nga model for the average horizontal component of peak ground motion and response spectra", Earthquake Spectra, Vol.24, Issue s1, pp.173-215. https://doi.org/10.1193/1.2894832
  7. Daoud, W., Kasama, K., Saleh, N., and Negm, A. (2016), "Ranking and transformation error assessment of shear strength parameters correlations", International Journal of Geo-Engineering, Volume 7, Paper no.14, DOI 10.1186/s40703-016-0028-5.
  8. Douglas, J. (2011), "Ground-motion prediction equations 1964-2010", PEER Report 2011/102, Pacific Earthquake Engineering Research Center, University of California at Berkeley, Berkeley, CA.
  9. Idriss, I.M. (2008), "An nga empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes", Earthquake Spectra, Vol.24, Issue s1, pp.217-242. https://doi.org/10.1193/1.2924362
  10. Dawood, H.M., Rodriguez-Marek, A., Bayless, J., Goulet, C., and Thompson, E. (2016), "A flatfile for the kik-net database processed using an automated protocol", Earthquake Spectra, Vol.32, Issue 2, pp.1281-1302. https://doi.org/10.1193/071214EQS106
  11. Goulet, C.A., Kishida, T., Ancheta, T.D., Cramer, C.H., Darragh, R.B., Silva, W.J., Hashash, Y.M.A., Harmon, J., Stewart, J.P., Wooddell, K.E., and Youngs, R.R. (2011), "Peer nga-east database", PEER Report 2014/17, Pacific Earthquake Engineering Research Center, University of California at Berkeley, Berkeley, CA.
  12. Illowsky, B. and Dean, S. (2017) "Introductory Statistics University of Oklahoma Custom Edition", 12th Media Services, Rice University.
  13. Seyhan, E., Stewart, J.P., Ancheta, T.D., Darragh, R.B., and Graves, R.W. (2014), "Nga-west2 site database", Earthquake Spectra, Vol. 30, Issue 3, pp.1007-1024. https://doi.org/10.1193/062913EQS180M