DOI QR코드

DOI QR Code

An Estimating Algorithm of Vehicle Collision Speed Through Images of Blackbox

블랙박스 영상 분석을 통한 차량 충돌 속도 연산 알고리즘에 대한 융복합 연구

  • Ko, Kwang-Ho (Division of Smart Automobile, Pyeongtaek University)
  • 고광호 (평택대학교 스마트자동차학과)
  • Received : 2018.07.03
  • Accepted : 2018.09.20
  • Published : 2018.09.28

Abstract

The vehicle collision speed in mid and high range can be checked by EDM(Event Driven memory) data recorded when the air bag works. But it's difficult to estimate the low speed of vehicle collision. And estimating the speed is important because the injury level can be changed by the impact speed. The study proposed an estimating algorithm by analysing the images recorded in car blackbox instrument. Low speed rear collision accidents simulated with wire winding motor for various vehicle types. The study estimated the impact speed with the ratio of the distance change between two vehicles and the length change of the number plate of front vehicle. The closer the vehicles are, the larger the plate length is. You can estimate the impact speed with the ratio. The impact speed is calculated with the initial distance for a specific length of number plate in the algorithm. The results can be applied to the linear rear collision because the angle of impact was not considered in this study.

에어백이 작동되는 중고속 추돌 사고의 경우 에어백 작동 전후의 차량 데이터가 차량의 EDM(Event Driven Memory)에 저장되어 그 추돌 속도를 쉽게 알 수 있다. 하지만 에어백이 작동하지 않는 저속영역에서 추돌하는 경우 그 속도를 산정하기가 어렵다. 또한 저속이라 하더라도 추돌속도에 따라 운전자의 부상 정도가 크게 영향을 받기 때문에 그 속도의 산정이 중요하다. 본 연구에서는 블랙박스에 저장된 영상 이미지를 분석하여 저속영역의 추돌속도를 연산하는 알고리즘을 제안하였다. 전기모터로 와이어로프를 이용하여 차량을 견인하는 방식으로 저속의 후방추돌 상황을 정확하게 재현하면서 다양한 차종과 속도에 대해 실험을 수행하였다. 이 때 블랙박스의 영상 이미지에서 두 차량의 거리가 좁아지는 비율과 전방 차량의 번호판 길이가 증가하는 비율이 동일함을 이용하여 추돌속도를 정밀하게 계산할 수 있다. 즉, 미리 측정된 초기거리와 블랙박스의 영상에서의 번호판의 길이를 초기조건으로 설정하여 본 연구의 계산 알고리즘을 적용하면 저속 추돌 속도를 정확하게 산정할 수 있다. 직선 추돌사고에는 본 연구의 결과가 그대로 적용되지만 각도를 두고 추돌하는 경우에는 별도의 고려가 필요하다.

Keywords

References

  1. J. Lotta & N. Hans. (2002). Suggestions for Evaluation Criteria of Neck Injury Protection in Rear-End Car Impacts, Traffic Injury Prevention, 3(3), 216-223. https://doi.org/10.1080/15389580213646
  2. D. E. Lefler & H. C. Gabler. (2004). The fatality and injury risk of light truck impacts with pedestrians in the United States, Accident Analysis & Prevention, 36(2), 295-304. https://doi.org/10.1016/S0001-4575(03)00007-1
  3. B. T. Ahn. (2018). Study for Drowsy Driving Detection & Prevention System, Journal of Convergence for Information Technology, 8(3), 193-198.
  4. S. Y. Oh. (2012). A Traffic Hazard Prediction Algorithm for Vehicle Safety Communications on a highway, Journal of Digital Convergence, 10(9), 319-324. https://doi.org/10.14400/JDPM.2012.10.9.319
  5. S. J. Lee C. H. Lee, A. Park & K. H. Kim. (2017). A Convergence Study on the Differences in Medical Practices and Medical cost according to Auto Insurance Companies, Journal of the Korea Convergence Society, 8(5), 61-68. https://doi.org/10.15207/JKCS.2017.8.1.061
  6. I. H. Han. (2012). Reconstruction Analysis of Multi-Car Rear-End Collision Accidents: Empirical/Analytical Methods, and Application of Video Event Data Recorder, Journal of Korean Society of Transportation, 30(2), 127-136. https://doi.org/10.7470/jkst.2012.30.2.127
  7. S. M. Kan & J. H, Kim. (2009). An empirical study on the relationship of speed change and injuries subjected by rear-end collisions, Journal of the Korean Data & Information Science Society, 20(5), 797-807.
  8. G. Dagmar, C. David & V. P. Lovsund. (1998). Car occupant safety in frontal crashes: a parameter study of vehicle mass, impact speed, and inherent vehicle protection, Accident Analysis & Prevention, 100(6), 713-722.
  9. R. Brach. (2003. 03. 03). Modeling of Low-Speed, Front-to-Rear Vehicle Impacts, SAE Technical Paper, 2003-01-0491, https://doi.org/10.4271/2003-01-0491
  10. R. Pride, D. Giddings, D. Richens & D. S. McNally. (2013). The sensitivity of the calculation of ΔV to vehicle and impact parameters, Accident Analysis & Prevention, 55, 144-153. https://doi.org/10.1016/j.aap.2013.03.002
  11. S. M. Kang. (2008). A Study on the Effect of Delta-V Based on Vehicle Damages and Injuries Subjected by Rear-End Collisions, Journal of the Korean Society of Safety, 23(2), 72-80.
  12. P. Kubiak, K. Siczek, A. Dąbrowski & A. Szosland. (2016). New high precision method for determining vehicle crash velocity based on measurements of body deformation, International Journal of Crashworthiness, 21(6), 532-541. https://doi.org/10.1080/13588265.2016.1194566
  13. T. J. Szabo et al. (1994). Human Occupant Kinematic Response to Low Speed Rear-End Impacts, SAE Transactions, 103(6), 630-642.
  14. B. Arem. (2006). The Impact of Cooperative Adaptive Cruise Control on Traffic-Flow Characteristics, IEEE Transactions on Intelligent Transportation Systems, 7(4), 429-436. https://doi.org/10.1109/TITS.2006.884615
  15. R. Limpert & D. Andrews. (1991). Linear and Rotational Momentum for Computing Impact Speeds in Two-Car Collisions, SAE Technical Paper 910123, https://doi.org/10.4271/910123.