DOI QR코드

DOI QR Code

제올라이트 4A 분리막을 이용한 물/에탄올, 물/이소프로필알코올 혼합물의 투과증발 특성 연구 : 활동도계수모형 및 Generalized Maxwell Stefan 모형

Pervaporation Characteristics of Water/Ethanol and Water/Isopropyl Alcohol Mixtures through Zeolite 4A Membranes: Activity Coefficient Model and Maxwell Stefan Model

  • 투고 : 2018.04.16
  • 심사 : 2018.05.02
  • 발행 : 2018.09.28

초록

본 연구에서는 (주)파인텍에서 개발한 제올라이트 4A 분리막을 이용하여 물, 에탄올, 이소프로필알코올 단일 성분 및 혼합물의 투과증발 실험을 수행하였다. 본 분리막은 수열합성법을 이용하여 제막하였고, Si/Al 비율이 1인 LTA 구조에 $Na^+$를 이온교환하여 약 $4{\AA}$의 기공크기를 갖고 있으며, 강한 친수성을 나타내고 있다. 물리적 특성을 확인하기 위해 SEM, porosimetry, BET, 압축강도계를 이용하였다. 다양한 온도 및 농도 조건 실험을 통해 제올라이트 4A 분리막이 물/에탄올(분리계수 3,000 이상) 및 물/이소프로필알코올(분리계수 1,500 이상) 혼합물로 부터 물을 선택적으로 분리할 수 있음을 확인하였다. 활동도계수, Generalized Maxwell Stefan 모형 및 Dusty Gas 모형을 이용하여 단일성분 및 혼합물의 투과증발 거동을 모사하였으며, Genetic Algorithm를 이용한 상수추정을 통하여 분리층의 흡착 및 확산상수를 구하였다.

In this study, pervaporation experiments of water, ethanol and IPA (Isopropyl alcohol) single components and water/ethanol, water/IPA mixtures were carried out using zeolite 4A membranes developed by Fine Tech Co. Ltd. Those membranes were fabricated by hydrothermal synthesis (growth in hydrothermal condition) after uniformly dispersing the zeolite seeds on the tubular alumina supports. They have a pore size of about $4{\AA}$ by ion exchange of $Na^+$ to the LTA structure with Si/Al ratio of 1.0, and shows strong hydrophilic property. Physical characteristics of prepared membranes were evaluated by using SEM (surface morphology), porosimetry (macro- or meso- pore analysis), BET (micropore analysis), and load tester (compressive strength). Pervaporation experiments with various temperature and concentration conditions confirmed that the zeolite 4A membrane can selectively separate water from ethanol and IPA. Water/ethanol separation factor was over 3,000 and water/IPA separation factor was over 1,500 (50 : 50 wt%, initial feed concentration). Pervaporation behaviors of single components and binary mixtures were predicted using ACM (activity coefficient model), GMS (generalized Maxwell Stefan) model and DGM (Dusty Gas Model). The adsorption and diffusion coefficients of the zeolite top layer were obtained by parameter estimation using GA (Genetic Algorithm, stochastic optimization method). All the calculations were carried out using MATLAB 2018a version.

키워드

참고문헌

  1. Binning, R. C., Lee, R. J., Jennings, J. F., and Martin, E. C., "Separation of Liquid Mixtures by Permeation," Ind. Eng. Chem., 53, 45-50 (1961).
  2. Michales, A. S., Baddour, R. F., Bixler, H. J., and Choo, C. Y., "Conditioned Polyethylene as a Permselective Membrane. Separation of Isomeric Xylenes," Ind. Eng. Chem. Process Des. Dev., 1, 14-25 (1962). https://doi.org/10.1021/i260001a003
  3. Aptel, P., Cunny, J., Jozefowicz, J., Morel, G., and Neel, J., "Liquid Transport through Membranes Prepared by Grafting of Polar Monomers onto Poly (Tetrafluoroethylene) Films. I. Some Fractionations of Liquid Mixtures by Pervaporation," J. Appl. Polym. Sci., 16, 1061-1076 (1972). https://doi.org/10.1002/app.1972.070160502
  4. Pereira, C. C., Habert, A. C., Nobrega, R., and Borges, C. P., "New Insights in the Removal of Diluted Volatile Organic Compounds from Dilute Aqueous Solution by Pervaporation Process," J. Membr. Sci., 138, 227-235 (1998). https://doi.org/10.1016/S0376-7388(97)00225-1
  5. Hofmann, D., Fritz, L., and Paul, D., "Molecular Modelling of Pervaporation Separation of Binary Mixtures with Polymeric Membranes," J. Membr. Sci., 144, 145-159 (1998). https://doi.org/10.1016/S0376-7388(98)00048-9
  6. Lee, Y. M., "Pervaporation of Organic Liquid Mixtures through Polymer Membranes," Polymer, 13, 3-13 (1989).
  7. Hong, Y. K., and Hong, W. H., "Pervaporation Characteristics of Aqueous Isopropanol Solution Using Tubular Type PDMS/Ceramic Composite Membrane," Hwahak Konghak, 36, 524-524 (1998).
  8. Rautenbach, R., and Albrecht, R., "The Separation Potential of Pervaporation : Part 1. Discussion of Transport Equations and Comparison with Reverse Osmosis," J. Membr. Sci., 25, 1-23 (1985). https://doi.org/10.1016/S0376-7388(00)83001-X
  9. Liu, Q., Noble, R. D., Falconer, J. L., and Funke, H. H., "Organics/Water Separation by Pervaporation with a Zeolite Membrane," J. Membr. Sci., 117, 163-174 (1996). https://doi.org/10.1016/0376-7388(96)00058-0
  10. Ahn, H. S., Lee, H. R., and Lee, Y. T., "NaY Zeolite Membrane Pervaporation for Dehydration from Ethylacetate Manufacturing Process," Korean Chem. Eng. Res., 43, 366-370 (2005).
  11. Kita, H., Horii, K., Ohtoshi, Y., Tanaka, K., and Okamoto, K., "Synthesis of a Zeolite NaA Membrane for Pervaporation of Water/Organic Liquid Mixtures," J. Mater. Sci. Lett., 14, 206-208 (1995). https://doi.org/10.1007/BF00318258
  12. Won, W., Feng, X., and Lawless, D., "Pervaporation with Chitosan Membranes: Separation of Dimethylcarbonate/Methanol/Water Mixtures," J. Membr. Sci., 209, 493-508 (2002). https://doi.org/10.1016/S0376-7388(02)00367-8
  13. Bowen, T. C., Noble, R. D., and Falconer, J. L., "Fundamentals and Applications of Pervaporation through Zeolite Membranes," J. Membr. Sci., 245, 1-33 (2004). https://doi.org/10.1016/j.memsci.2004.06.059
  14. Kasik A., and Lin, Y. S., "Organic Solvent Pervaporation Properties of MOF-5 Membranes," Sep. Purif. Technol., 121, 38-45 (2014). https://doi.org/10.1016/j.seppur.2013.04.033
  15. Morigami, Y., Kondo, M., Abe, J., Kita, H., and Okamoto, K., "The First Large-Scale Pervaporation Plant Using Tubular-Type Module with Zeolite NaA Membrane," Sep. Purif. Technol., 25, 251-260 (2001). https://doi.org/10.1016/S1383-5866(01)00109-5
  16. Han, M., Kim, Y., Kim, Y., Chung, B., and Choi, G. W., "Bioethanol Production from Optimized Pretreatment of Cassava Stem," Korean J. Chem. Eng., 28, 119-125 (2011). https://doi.org/10.1007/s11814-010-0330-4
  17. Noble, R. D., and Stern, S. A., Membrane Separations Technology:Principles and Applications, 1st ed., Elsevier Science, 도시, 93-197 (1995).
  18. Mason, E. A., and Malinauskas, A. P., "Gas Transport in Porous Media : The Dustygas Model," Elsevier Science Ltd., New York, 30-50 (1983).
  19. Tuchlenski, A., Uchytil, P., and Seidel-Morgenstern, A., "An Experimental Study of Combined Gas Phase and Surface Diffusion in Porous Glass," J. Membr. Sci., 140, 165-184 (1998). https://doi.org/10.1016/S0376-7388(97)00270-6
  20. Uchytil, P., "Gas Permeation in Ceramic Membranes Part 1. Theory and Testing of Ceramic Membranes," J. Membr. Sci., 97, 139-144 (1994). https://doi.org/10.1016/0376-7388(94)00156-S
  21. Kapteijn, F., Moulijn, J. A., and Krishna, R., "The Generalized Maxwell-Stefan Model for Diffusional in Zeolites: Sorbate Molecules with Different Saturation Loadings," Chem. Eng. Sci., 55, 2923-2930 (2000). https://doi.org/10.1016/S0009-2509(99)00564-3
  22. Kapteijn, F., Bakker, W. J. W., Zheng, G., Poppe, J., and Moulijn, J. A., "Permeation and Separation of Light Hydrocarbons through a Silicalite-1 Membrane Application of the Generalized Maxwell-Stefan Equations," Chem. Eng. J., 57, 145-153 (1995).
  23. Krishna, R., and van den Broeke, L. J. P., "The Maxwell-Stefan Description of Mass Transport Across Zeolite Membranes," Chem. Eng. J., 57, 155-162 (1995).
  24. Oh, W. J., Jung, J. C., Yeo, J., Lee, J. H., Kim, H., Park, Y. C., Lee, D. H., Cho, C. H., and Moon, J. H., "Pervaporation of Binary Water/Methanol and Water/Butanol Mixtures through Zeolite 4A Membranes: Experiments and Modeling," Membr. J., 27, 487-498 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.6.487