Automated patient set-up using intensity based image registration in proton therapy

양성자 치료 시 Intensity 기반의 영상 정합을 이용한 환자 자동화 Set up 적용 방법

  • Jang, Hoon (Department of Proton Therapy Center, National Cancer Center) ;
  • Kim, Ho Sik (Department of Proton Therapy Center, National Cancer Center) ;
  • Choe, Seung Oh (Department of Proton Therapy Center, National Cancer Center) ;
  • Kim, Eun Suk (Department of Proton Therapy Center, National Cancer Center) ;
  • Jeong, Jong Hyi (Department of Proton Therapy Center, National Cancer Center) ;
  • Ahn, Sang Hee (Department of Proton Therapy Center, National Cancer Center)
  • 장훈 (국립암센터 양성자치료센터) ;
  • 김호식 (국립암센터 양성자치료센터) ;
  • 최승오 (국립암센터 양성자치료센터) ;
  • 김은숙 (국립암센터 양성자치료센터) ;
  • 정종휘 (국립암센터 양성자치료센터) ;
  • 안상희 (국립암센터 양성자치료센터)
  • Published : 2018.12.29

Abstract

Purpose : Proton Therapy using Bragg-peak, because it has distinct characteristics in providing maximum dosage for tumor and minimal dosage for normal tissue, a medical imaging system that can quantify changes in patient position or treatment area is of paramount importance to the treatment of protons. The purpose of this research is to evaluate the usefulness of the algorithm by comparing the image matching through the set-up and in-house code through the existing dips program by producing a Matlab-based in-house registration code to determine the error value between dips and DRR to evaluate the accuracy of the existing treatment. Materials and Methods : Thirteen patients with brain tumors and head and neck cancer who received proton therapy were included in this study and used the DIPS Program System (Version 2.4.3, IBA, Belgium) for image comparison and the Eclipse Proton Planning System (Version 13.7, Varian, USA) for patient treatment planning. For Validation of the Registration method, a test image was artificially rotated and moved to match the existing image, and the initial set up image of DIPS program of existing set up process was image-matched with plan DRR, and the error value was obtained, and the usefulness of the algorithm was evaluated. Results : When the test image was moved 0.5, 1, and 10 cm in the left and right directions, the average error was 0.018 cm. When the test image was rotated counterclockwise by 1 and $10^{\circ}$, the error was $0.0011^{\circ}$. When the initial images of four patients were imaged, the mean error was 0.056, 0.044, and 0.053 cm in the order of x, y, and z, and 0.190 and $0.206^{\circ}$ in the order of rotation and pitch. When the final images of 13 patients were imaged, the mean differences were 0.062, 0.085, and 0.074 cm in the order of x, y, and z, and 0.120 cm as the vector value. Rotation and pitch were 0.171 and $0.174^{\circ}$, respectively. Conclusion : The Matlab-based In-house Registration code produced through this study showed accurate Image matching based on Intensity as well as the simple image as well as anatomical structure. Also, the Set-up error through the DIPS program of the existing treatment method showed a very slight difference, confirming the accuracy of the proton therapy. Future development of additional programs and future Intensity-based Matlab In-house code research will be necessary for future clinical applications.

목 적 : Proton Therapy는 Bragg-peak를 이용해 종양에는 최대의 선량, 정상조직에는 최소의 선량을 줄 수 있는 특징을 가지고 있기 때문에 환자의 위치변화나 치료부위의 위치 변화를 정량화 할 수 있는 의료영상 분석 시스템은 양성자 치료에 있어서 무엇보다도 중요하다. 본 연구 목적은 Matlab 기반의 In-house Registration code를 제작하여 기존 DIPS program을 통한 Set-up과 In-house code를 통한 영상정합을 비교하여 Algorithm의 유용성을 평가하고 DIPS와 DRR간의 오차 값을 확인하여 기존 치료의 정확성을 평가하고자 한다. 대상 및 방법 : 본원에서 양성자 치료를 받은 13명의 뇌종양, 두경부암 환자를 대상으로 하였으며 영상비교에 필요한 DIPS Program System(Version 2.4.3, IBA, Belgium)와 환자의 치료계획을 위해 Eclipse Proton Planning System(Version 13.7, Varian, USA)을 사용하였다. Registration 방법에 대한 Validation을 위해 Test image를 인위적으로 회전 및 이동하여 기존 Image와 영상정합 하였고, 기존 Set up 방식의 DIPS program의 환자 일별 초기 Set up image를 plan DRR과 영상정합 하여 각각 오차 값을 얻어 Algorithm의 유용성을 평가하였다. 그리고 기존 Set up 방식의 정확성을 평가하기 위해 환자 일별 최종 Set up image와 DRR image를 영상정합하여 오차 값을 확인하였다. 결 과 : Test image를 left와 right 방향으로 각각 0.5, 1, 10 cm를 이동시켰을 때 평균 0.018 cm의 오차 값을 보였으며 시계와 반시계방향으로 각각 1, $10^{\circ}$씩 회전시켰을 경우에는 평균 $0.0011^{\circ}$의 오차를 나타냈다. 4명의 환자 일별 초기 image를 영상정합 하였을 때는 x, y, z 방향 순으로 평균 0.056, 0.044, 0.053 cm의 오차 값을 나타냈으며 Rotation, Pitch 순으로 0.190, $0.206^{\circ}$의 차이를 나타냈다. 13명의 환자 일별 최종 image를 영상 정합 하였을 때는 x, y, z 방향 순으로 평균 차이는 0.062, 0.085, 0.074 cm이였고 Vector 값으로는 평균 0.120 cm의 차이를 보였다. Rotation, Pitch 순으로는 평균 0.171, $0.174^{\circ}$의 차이 값을 나타냈다. 결 론 : 본 연구를 통해 제작된 Matlab 기반의 In-house Registration code는 단순한 Image 뿐만 아니라 해부학적 구조에서도 Intensity 기반의 정확한 영상정합을 나타냈다. 또한 기존 치료방식의 DIPS program을 통한 Set-up 오차는 매우 미미한 차이를 보임으로써 이는 양성자치료의 정확성을 확인할 수 있었다. 앞으로 임상적용을 위해 추가적인 프로그램 개발과 향후 Intensity 기반의 Matlab In-house code 연구가 필요하다고 사료된다.

Keywords

References

  1. Dowdell SJ, Clasie B, Depauw N, et al: Monte Carlo study of the potential reduction in out-of-field doseusing a patient-specific aperture in pencil beam scanning proton therapy. Phys Med Bilo 2012 May 21;57(10):2829-42 https://doi.org/10.1088/0031-9155/57/10/2829
  2. Jin sung K, Myonggeun Y, Dongwook K, et al: Image Based Quality Assurance of Range Compensator for Proton Beam Therapy. Korean Journal of Medical Physics 2008 Mar; 19(1): 35-41
  3. Jin Sung K, Min kook C, Young bin C, et al.: Geometric Calibration of Cone-beam CT System for Image Guided Proton Therapy. Korean Journal of Medical Physics 2008 Dec; 19(4): 209-218
  4. Jeong Su K, Jeong ku K.: Exposure Dose of DIPS in Proton Therapy for Pediatric Cancer Patients. Journal of radiological science and technology 2011; 34: 59-64
  5. Min Jun S, Do yeon K.: Pulmonary vascular Segmentation and Refinement On the CT Scans. Journal of the Korea Institute of Information and Communication Engineering 2012;16(3):591-597 https://doi.org/10.6109/jkiice.2012.16.3.591
  6. Vincent Chu, Ghassan Hamarneh.: MATLAB-ITK Interface for Medical Image Filtering, Segmentation, and Registration. The international Society for Optical Engineering 2006 March; 6144(2): 1112-1117
  7. Catholic University of Korea.: Development of the next generation of radiation therapy technology fused with multi-modlity image based diagnosis. Ministry of Science, ICT and Future Planning 2015 March.