DOI QR코드

DOI QR Code

Comparison of Isoflavone Content in 43 Soybean Varieties Adapted to Highland Cultivation Areas

고랭지 적응 콩 43개 품종의 해발고도별 이소플라본 함량 비교

  • Hong, Su-Young (Highland Agricultural Research Institute, National Institute of Crop Science, RDA) ;
  • Kim, Su-Jeong (Highland Agricultural Research Institute, National Institute of Crop Science, RDA) ;
  • Sohn, Hwang-Bae (Highland Agricultural Research Institute, National Institute of Crop Science, RDA) ;
  • Kim, Yul-Ho (Highland Agricultural Research Institute, National Institute of Crop Science, RDA) ;
  • Cho, Kwang-Soo (Highland Agricultural Research Institute, National Institute of Crop Science, RDA)
  • 홍수영 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 김수정 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 손황배 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 김율호 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 조광수 (농촌진흥청 국립식량과학원 고령지농업연구소)
  • Received : 2018.10.13
  • Accepted : 2018.11.09
  • Published : 2018.12.01

Abstract

In this study, we analyzed the growth characteristics and isoflavone content of 43 soybean varieties highly adaptable to highland areas. The flowering period of each cultivation zone was from July 15 to August 12 at Daewallyeong, from July 18 to August 11 at Jinbu, and from July 23 to August 13 at Gangneung. The accumulated temperature from flowering to maturity was $1,297^{\circ}C$ for Daegwallyeong, $1,391^{\circ}C$ for Jinbu, and $1,685^{\circ}C$ for Gangneung. Forty-three varieties were classified into four utilities; soy sauce and tofu, bean sprouts, cooking with rice, and vegetable and early maturity. The content of isoflavone was highest at $2,579{\mu}g/g$ in varieties for soy sauce and tofu usage. Five varieties ("Paldalkong," "Sinpaldal2," "Ilmikong," "Sinpaldalkong," and "Daepung") cultivated in Daegwallyeong had over $4,000{\mu}g/g$ of isoflavone. The isoflavone content of the region Daegwallyeong was different at the significance level of 0.1 (p=0.061) compared to Gangneung. There was no significant difference between Gangneung and Jinbu. It is thought that the low temperature of the maturation stage during the growing period affected isoflavone accumulation. The varieties with more than $3,000{\mu}g/g$ of isoflavone content in Daegwallyeong, Jindu, and Gangneung were "L29," "Williams82," "Ilmikong," and "Daepung." These were genetically and environmentally stable in isoflavone content. It is expected that this study will be used as basic data for the functional breeding and selection of soybean varieties highly adaptable to a specific region, and to help expand soybean cultivation areas in highlands.

본 연구에서는 고랭지 적응성이 우수한 43개 콩 품종을 대상으로 각 지역별 생육특성과 이소플라본 함량 변이를 분석하였다. 재배 지대별 개화기는 대관령 7월 15일에서 8월 12일, 진부 7월 18일에서 8월 11일 그리고 강릉에서 7월 23일에서 8월 13일 이었다. 또한 개화기에서 성숙기까지의 소요일수는 61~79일 이었으며 이 기간중의 적산온도는 대관령 $1,297^{\circ}C$, 진부 $1,391^{\circ}C$, 강릉 $1,685^{\circ}C$로 나타났으며 3지역 모두 전 재배기간 중의 적산온도가 $2,000^{\circ}C$ 이상으로 경제적 콩 재배가 가능할 것으로 판단되었다. 43개 품종을 장류 두부용, 나물용, 밥밑용 그리고 풋콩 올콩용으로 구분하여 이소플라본 함량을 분석하였을 때 평균 이소플라본 함량은 장류 두부용 $2,579{\mu}g/g$으로 높게 나타내었다. 품종별 이소플라본 함량 비교에서 대관령에서 재배된 '팔달콩', '신팔달2호', '일미콩', '신팔달콩', '대풍' 5품종이 $4,000{\mu}g/g$ 이상을 보였다. 지역간 이소플라본 함량은 강릉과 대관령간 비교에서 p=0.061로 유의수준 0.1에서 유의차가 인정되었으며 강릉과 진부 간에서는 유의차가 인정되지 않았다. 이는 재배기간 중 특히 성숙기의 저온이 이소플라본 함량에 영향을 끼친 것으로 판단된다. 대관령, 진부, 강릉 3개 지역에서 $3,000{\mu}g/g$ 이상의 이소플라본 함량을 보이는 품종은 'L29', 'Williams 82', '일미콩', '대풍'으로 유전 및 환경적으로 안정된 경향을 보였다. 이번 연구를 통하여 콩의 기능성 육종과 지역별 품종선택에 있어서 기초자료로 이용할 수 있을 것이며 고지대에서의 콩 재배 확대에 기여할 것으로 기대된다.

Keywords

Acknowledgement

Supported by : 국립식량과학원

References

  1. Carrao-Panizzi, MC, Beleia ADP, Kitamura K, Oliveira MCN. 1999. Effects of genetics and environment on isoflavone content of soybean from different regions of Brazil. Pesq Agropec Bras Brasilia 34: 1787-1795.
  2. Chen M, Rao Y, Zheng Y, Wei S, Li Y, Guo T, Yin P. 2014. Association between soy isoflavone intake and breast cancer risk for pre- and post-menopausal women: A metaanalysis of epidemiological studies. PLOS ONE 9: 1-10.
  3. Dixon RA, Paiva NL. 1995. Stress-induced phenoylpropanoid metabolism. The Plant Cell 7: 1085-1097. https://doi.org/10.2307/3870059
  4. EL-Shemy HA. 2011. Soybean and nutrition. http://www.intechweb.org
  5. Goss MJ, Varennes A, Smith PS, Ferguson JA. 2002. N2 fixation by soybeans grown with different levels of mineral nitrogen, and the fertilizer replacement value for a following crop. Can J Soil Sci 82: 139-145. https://doi.org/10.4141/S01-003
  6. Ha TJ, Lee JH, Shin SO, Shin SH, Kan SI, Kim HT, Ko JM, Lee MH, Park KY. 2009. Changes in anthocyanin and isoflavone concentrations in black seed-coated soybean at different planting locations. J Crop Sci Biotech 12: 79-86. https://doi.org/10.1007/s12892-009-0093-9
  7. Kang X, Zhang Q. Wang S, Huang X, Jin S. 2010. Effect of soy isoflavones on breast cancer recurrence and death for patients receiving adjuvant endocrine therapy. CMAJ 182: 1857-1862. https://doi.org/10.1503/cmaj.091298
  8. Korea Rural Economic Institute (KERI). http://www.krei.re.kr
  9. Korea Seed & Variety Service. https://www.seed.go.kr/protection/situation/register_02.jsp
  10. Kim EH, Kim SL, Kim SH, Chung IM. 2012. Comparison of isoflavones and anthocyanins in soybean [Glycine max (L) Merrill] seeds of different planting dates. J Agric Food Chem 6: 10196-10202.
  11. Kim JA, Chung IM. 2007. Change in isoflavone concentration of soybean (Glycine max L.) seeds at different growth stages. J Sci Food Agric 87: 496-503. https://doi.org/10.1002/jsfa.2743
  12. Kitamura K, Jetta K, Kikuchi A, Kudou S, Okubo K. 1991. Low isoflavone content in some early maturing cultivars, so-called "Summer-type soybean" (Glycine max (L) Merrill). Jpn J Breed 41: 651-654. https://doi.org/10.1270/jsbbs1951.41.651
  13. Lee C, Chon MS, Kim HT, Yun HT, Lee B, Chung YS, Kim RW, Chon HK. 2015. Soybean [Glycine max (L.) Merrill]: Importance as a crop and pedigree reconstruction of Korean varieties. Plant Breed Biotech 3: 179-196. https://doi.org/10.9787/PBB.2015.3.3.179
  14. Lee SJ, Yan WK, Ahn JK, Chung IM. 2003. Effect of year, site, genotype and their interactions on various soybean isoflavones. Field Crop Res 81: 181-192. https://doi.org/10.1016/S0378-4290(02)00220-4
  15. O'Keefe S, Bianchi L, Sharman J. 2015. Soybean nutrition. SM J Nutr Metab 1: 1006.
  16. Ok HC, Yoon YH, Jeong JC, Hur OS, Lee CW, Kim CG, Cho HM. 2008. Yields and isoflavone contents of soybean cultivar in highland area. Korean J Crop Sci 53: 102-109.
  17. Potter SM, Baum JA, Teng H, Stillman RJ, Shay NF, Erdman JW Jr. 1998. Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women1-3. Am J Clin Nutr 68(suppl): 1375S-9S. https://doi.org/10.1093/ajcn/68.6.1375S
  18. Rodriguez-Navarro DN, Margaret Oliver I, Albareda Contreras M, Ruiz-Sainz JE. 2011. Soybean interactions with soil microbes, agronomical and molecular aspects. Agron Sustain 31: 173-190. https://doi.org/10.1051/agro/2010023
  19. Tsukamoto C, Shimada S, Igita K, Kudou S, Kokubun M, Okubo K, Kitamura K. 1995. Factors affecting isoflavones content in soybean seeds: changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. J Agric Food Chem 43: 1184-1192. https://doi.org/10.1021/jf00053a012
  20. Zheng J, Jin Y, Row KH. 2005. Analysis of isoflavones from Korea and Chinese soybean and processed products by HPLC. J Kor Chem Soc 49: 349-354. https://doi.org/10.5012/jkcs.2005.49.4.349