Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Yu, Z.T.F., Yong, K.M.A. & Fu, J. Microfluidic blood cell sorting: now and beyond. Small 10, 1687-1703 (2014). https://doi.org/10.1002/smll.201302907
- Wyatt Shields IV, C., Reyes, C. & Lopez, G.P. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15, 1230-1249 (2015). https://doi.org/10.1039/C4LC01246A
- Antfolk, M. & Laurell, T. Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood-a review. Anal. Chim. Acta 965, 9-35 (2017). https://doi.org/10.1016/j.aca.2017.02.017
- Wu, J., Chen, Q. & Lin, J.-M. Microfluidic technologies in cell isolation and analysis for biomedical applications. Analyst 142, 421-441 (2017). https://doi.org/10.1039/C6AN01939K
- Mao, X., Lin, S.-C.S., Dong, C. & Huang, T.J. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Lab Chip 9, 1583-1589 (2009). https://doi.org/10.1039/b820138b
- Lin, S.-C., Yen, P.-W., Peng, C.-C. & Tung, Y.-C. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing. Lab Chip 12, 3135-3141 (2012). https://doi.org/10.1039/c2lc40246g
- Mach, A.J., Adeyiga, O.B. & Di Carlo, D. Microfluidic sample preparation for diagnostic cytopathology. Lab Chip 13, 1011-1026 (2013). https://doi.org/10.1039/c2lc41104k
- Li, X., Chen, W., Liu, G., Lu, W. & Fu, J. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes. Lab Chip 14, 2565-2575 (2014). https://doi.org/10.1039/C4LC00350K
- Tripathi, S., Kumar, Y.V.B., Agrawal, A., Prabhakar, A. & Joshi, S.S. Microdevice for plasma separation from whole human blood using bio-physical and geometrical effects. Sci. Rep. 6, 26749 (2016). https://doi.org/10.1038/srep26749
- Myung, J.H. & Hong, S. Microfluidic devices to enrich and isolate circulating tumor cells. Lab Chip 15, 4500-4511 (2015). https://doi.org/10.1039/C5LC00947B
- Yeo, T. et al. Microfluidic enrichment for the single cell analysis of circulating tumor cells. Sci. Rep. 6, 22076 (2016). https://doi.org/10.1038/srep22076
- Doh, I. & Cho, Y.-H. A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sens. Actuators A Phys. 121, 59-65 (2005). https://doi.org/10.1016/j.sna.2005.01.030
- Cetin, B. & Li, D. Dielectrophoresis in microfluidics technology. Electrophoresis 32, 2410-2427 (2011). https://doi.org/10.1002/elps.201100167
- Pamme, N. Continuous flow separations in microfluidic devices. Lab Chip 7, 1644-1659 (2007). https://doi.org/10.1039/b712784g
- Robert, D. et al. Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device. Lab Chip 11, 1902-1910 (2011). https://doi.org/10.1039/c0lc00656d
- Shen, F., Hwang, H., Hahn, Y.K. & Park, J.-K. Label-free cell separation using a tunable magnetophoretic repulsion force. Anal. Chem. 84, 3075-3081 (2012). https://doi.org/10.1021/ac201505j
- Shi, J., Huang, H., Stratton, Z, Huang, Y. & Huang, T.J. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9, 3354-3359 (2009). https://doi.org/10.1039/b915113c
- Li, P. et al. Acoustic separation of circulating tumor cells. Proc. Natl. Acad. Sci. U.S.A. 112, 4970-4975 (2015). https://doi.org/10.1073/pnas.1504484112
- Urbansky, A. et al. Rapid and effective enrichment of mononuclear cells from blood using acoustophoresis. Sci. Rep. 7, 17161 (2017). https://doi.org/10.1038/s41598-017-17200-9
- Wang, X. et al. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip 11, 3656-3662 (2011). https://doi.org/10.1039/c1lc20653b
- Landenberger, B., Hofemann, H., Wadle, S. & Rohrbach, A. Microfluidic sorting of arbitrary cells with dynamic optical tweezers. Lab Chip 12, 3177-3183 (2012). https://doi.org/10.1039/c2lc21099a
- Yamada, M., Nakashima, M. & Seki, M. Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal. Chem. 76, 5465-5471 (2004). https://doi.org/10.1021/ac049863r
- Ashley, J.F., Bowman, C.N. & Davis, R.H. Hydrodynamic separation of particles using pinched-flow fractionation. AIChE J. 59, 3444-3457 (2013). https://doi.org/10.1002/aic.14087
- Huang, L.R., Cox, E.C., Austin, R.H. & Sturm, J.C. Continuous particle separation through deterministic lateral displacement. Science 304, 987-990 (2004). https://doi.org/10.1126/science.1094567
- McGrath, J., Jimenez, M. & Bridle, H. Deterministic lateral displacement for particle separation: a review. Lab Chip 14, 4139-4158 (2014). https://doi.org/10.1039/C4LC00939H
- Tran, T.S.H., Ho, B.D., Beech, J.P. & Tegenfeldt, J.O. Open channel deterministic lateral displacement for particle and cell sorting. Lab Chip 17, 3592-3600 (2017). https://doi.org/10.1039/C7LC00707H
- Choi, S. & Park, J.-K. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel. Lab Chip 7, 890-897 (2007). https://doi.org/10.1039/b701227f
- Choi, S., Song, S., Choi, C. & Park, J.-K. Hydrophoretic sorting of micrometer and submicrometer particles using anisotropic microfluidic obstacles. Anal. Chem. 81, 50-55 (2009). https://doi.org/10.1021/ac801720x
- Kim, B., Lee, J.K. & Choi, S. Continuous sorting and washing of cancer cells from blood cells by hydrophoresis. BioChip J. 10, 81-87 (2016). https://doi.org/10.1007/s13206-016-0201-0
- Di Carlo, D. Inertial microfluidics. Lab Chip 9, 3038-3046 (2009). https://doi.org/10.1039/b912547g
- Zhang, J. et al. Fundamentals and applications of inertial microfluidics: a review. Lab Chip 16, 10-34 (2016). https://doi.org/10.1039/C5LC01159K
- Godino, N., Jorde, F., Lawlor, D., Jaeger, M. & Duschl, C. Purification of microalgae from bacterial contamination using a disposable inertia-based microfluidic device. J. Micromech. Microeng. 25, 084002 (2015). http://dx.doi.org/10.1088/0960-1317/25/8/084002
- Di Carlo, D., Irimia, D., Tompkins, R.G. & Toner, M. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. U.S.A. 104, 18892-18897 (2007). https://doi.org/10.1073/pnas.0704958104
- Bhagat, A.A.S., Kuntaegowdanahalli, S.S. & Papautsky, I. Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys. Fluids 20, 101702 (2008). https://doi.org/10.1063/1.2998844
- Amini, H., Lee, W. & Di Carlo, D. Inertial microfluidic physics. Lab Chip 14, 2739-2761 (2014). https://doi.org/10.1039/c4lc00128a
- Lee, M.G., Choi, S. & Park, J.-K. Inertial separation in a contractio-expansion array microchannel. J. Chromatogr. A 1218, 4138-4143 (2011). https://doi.org/10.1016/j.chroma.2010.11.081
- Choi, K. et al. Negative selection by spiral inertial microfluidics improves viral recovery and sequencing from blood. Anal. Chem. 90, 4657-4662 (2018). https://doi.org/10.1021/acs.analchem.7b05200
- Park, J.-S. & Jung, H.-I. Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels. Anal. Chem. 81, 8280-8288 (2009). https://doi.org/10.1021/ac9005765
- Segre, G. & Silberberg, A. Radial particle displacements in Poiseuille flow of suspensions. Nature 189, 209-210 (1961). https://doi.org/10.1038/189209a0
- Segre, G. & Silberberg, A. Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation. J. Fluid Mech. 14, 136-157 (1962). https://doi.org/10.1017/S0022112062001111
- Mach. A.J. & Di Carlo, D. Continuous scalable blood filtration device using inertial microfluidics. Biotechnol. Bioeng. 107, 302-311 (2010). https://doi.org/10.1002/bit.22833
- Li, M., van Zee, M., Goda, K. & Di Carlo, D. Size-based sorting of hydrogel droplets using inertial microfluidics. Lab Chip 18, 2575-2582 (2018). https://doi.org/10.1039/C8LC00568K
- Zhou, J., Giridhar, P.V., Kasper, S. & Papautsky, I. Modulation of aspect ratio for complete separation in an inertial microfluidic channel. Lab Chip 13, 1919-1929 (2013). https://doi.org/10.1039/c3lc50101a
- Tan, A.P. et al. Continuous-flow cytomorphological staining and analysis. Lab Chip 14, 522-531 (2014). https://doi.org/10.1039/C3LC50870F
- Dudani, J.S., Go, D.E., Gossett, D.R., Tan, A.P. & Di Carlo, D. Mediating millisecond reaction time around particles and cells. Anal. Chem. 86, 1502-1510 (2014). https://doi.org/10.1021/ac402920m
- Dudani, J.S. et al. Rapid inertial solution exchange for enrichment and flow cytometric detection of microvesicles. Biomicrofluidics 9, 014112 (2015). https://doi.org/10.1063/1.4907807
- Shen, S. et al. Regulating secondary flow in ultra-low aspect ratio microchannels by dimensional confinement. Adv. Theory Simul. 1, 1700034 (2018). https://doi.org/10.1002/adts.201700034
- Bhagat, A.A.S., Kuntaegowdanahalli, S.S., Kaval, N., Seliskar, C.J. & Papautsky, I. Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomed. Microdevices 12, 187-195 (2010). https://doi.org/10.1007/s10544-009-9374-9
- Lee, M.G. et al. Inertial blood plasma separation in a contraction-expansion array microchannel. Appl. Phys. Lett. 98, 253702 (2011). https://doi.org/10.1063/1.3601745
- Lee, M.G., Shin, J.H., Bae, C.Y., Choi, S. & Park, J.-K. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress, Anal. Chem. 85, 6213-6218 (2013). https://doi.org/10.1021/ac4006149
- Lee, M.G., Shin, J.H., Choi, S. & Park, J.-K. Enhanced blood plasma separation by modulation of inertial lift force. Sens. Actuators B Chem. 190, 311-317 (2014). https://doi.org/10.1016/j.snb.2013.08.092
- Kuntaegowdanahalli, S.S., Bhagat, A.A.S., Kumar, G. & Papautsky, I. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9, 2973-2980 (2009). https://doi.org/10.1039/b908271a
- Zhang, J., Li, W. & Alici, G. Inertial microfluidics: mechanisms and applications. In D. Zhang & B. Wei (Eds.), Advanced Mechatronics and MEMS Devices II, 563-593 (2017).
- Hou, H.W. et al. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 3, 1259 (2013). https://doi.org/10.1038/srep01259
- Warkiani, M.E. et al. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 14, 128-137 (2014). https://doi.org/10.1039/C3LC50617G
- Lee, W. et al. 3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section. Sci. Rep. 5, 7717 (2015). https://doi.org/10.1038/srep07717
- Choi, J., Hong, S.C., Kim, W. & Jung, J.H. Highly enriched, controllable, continuous aerosol sampling using inertial microfluidics and its application to real-time detection of airborne bacteria. ACS Sensors 2, 513-521 (2017). https://doi.org/10.1021/acssensors.6b00753
- Kim, J. et al. Size-dependent inertial focusing position shift and particle separations in triangular microchannels. Anal. Chem. 90, 1827-1835 (2018). https://doi.org/10.1021/acs.analchem.7b03851
- Xu, W., Hou, Z., Liu, Z. & Wu, Z. Viscosity-difference-induced asymmetric selective focusing for large stroke particle separation. Microfluid. Nanofluid. 20, 128 (2016). https://doi.org/10.1007/s10404-016-1791-5
- Lee, D. et al. Active control of inertial focusing positions and particle separations enabled by velocity profile tuning with coflow systems. Anal. Chem. 90, 2902-2911 (2018). https://doi.org/10.1021/acs.analchem.7b05143
- Wang, L. & Dandy, D.S. High-throughput inertial focusing of micrometer- and sub-micrometer-sized particles separation. Adv. Sci. 4, 1700153 (2017). https://doi.org/10.1002/advs.201700153
- Cruz, J. et al. High pressure inertial focusing for separating and concentrating bacteria at high throughput. J. Micromech. Microeng. 27, 084001 (2017). https://doi.org/10.1088/1361-6439/aa6b14
- Mutlu, B.R., Edd, J.F. & Toner, M. Oscillatory inertial focusing in infinite microchannels. Proc. Natl. Acad. Sci. U.S.A. 115, 7682-7687 (2018). https://doi.org/10.1073/pnas.1721420115
Cited by
- A Minireview on Inertial Microfluidics Fundamentals: Inertial Particle Focusing and Secondary Flow vol.13, pp.1, 2018, https://doi.org/10.1007/s13206-019-3110-1
- Hydroporator: a hydrodynamic cell membrane perforator for high-throughput vector-free nanomaterial intracellular delivery and DNA origami biostability evaluation vol.19, pp.10, 2018, https://doi.org/10.1039/c9lc00041k
- Investigation of Leukocyte Viability and Damage in Spiral Microchannel and Contraction-Expansion Array vol.10, pp.11, 2018, https://doi.org/10.3390/mi10110772
- On‐Chip Generation of Vortical Flows for Microfluidic Centrifugation vol.16, pp.9, 2018, https://doi.org/10.1002/smll.201903605
- Hydrophoresis - A Microfluidic Principle for Directed Particle Migration in Flow vol.14, pp.1, 2018, https://doi.org/10.1007/s13206-020-4107-5
- Inertial focusing in triangular microchannels with various apex angles vol.14, pp.2, 2018, https://doi.org/10.1063/1.5133640
- Intracellular Nanomaterial Delivery via Spiral Hydroporation vol.14, pp.3, 2020, https://doi.org/10.1021/acsnano.9b07930
- Channel innovations for inertial microfluidics vol.20, pp.19, 2018, https://doi.org/10.1039/d0lc00714e
- Inertial microfluidics: Recent advances vol.41, pp.24, 2018, https://doi.org/10.1002/elps.202000134
- Enhanced Molecular Diagnosis of Bloodstream Candida Infection with Size-Based Inertial Sorting at Submicron Resolution vol.92, pp.23, 2020, https://doi.org/10.1021/acs.analchem.0c03718
- Advances in continuous-flow based microfluidic PCR devices-a review vol.2, pp.4, 2018, https://doi.org/10.1088/2631-8695/abd287
- Label‐Free Isolation and Single Cell Biophysical Phenotyping Analysis of Primary Cardiomyocytes Using Inertial Microfluidics vol.17, pp.8, 2018, https://doi.org/10.1002/smll.202006176
- Methods of Generating Dielectrophoretic Force for Microfluidic Manipulation of Bioparticles vol.7, pp.6, 2021, https://doi.org/10.1021/acsbiomaterials.1c00083
- The Lattice-Boltzmann Modeling of Microflows in a Cell Culture Microdevice for High-Throughput Drug Screening vol.11, pp.19, 2018, https://doi.org/10.3390/app11199140
- Label-Free Isolation of Exosomes Using Microfluidic Technologies vol.15, pp.11, 2018, https://doi.org/10.1021/acsnano.1c03469
- A microfluidic chip integrated with 3D sidewall electrodes and wavy microchannel for cell focusing and separation vol.31, pp.12, 2018, https://doi.org/10.1088/1361-6439/ac333e