DOI QR코드

DOI QR Code

황사배출량을 적용한 동아시아 미세먼지 예보 개선 연구

A Study on Particulate Matter Forecasting Improvement by using Asian Dust Emissions in East Asia

  • 최대련 (안양대학교 환경에너지공학과) ;
  • 윤희영 (안양대학교 환경에너지공학과) ;
  • 장임석 (국립환경과학원 대기질통합예보센터) ;
  • 이재범 (국립환경과학원 대기질통합예보센터) ;
  • 이용희 (국립환경과학원 대기질통합예보센터) ;
  • 명지수 (국립환경과학원 대기질통합예보센터) ;
  • 김태희 (국립환경과학원 대기질통합예보센터) ;
  • 구윤서 (안양대학교 환경에너지공학과)
  • Choi, Daeryun (Department of Environmental and Energy Engineering, Anyang University) ;
  • Yun, Huiyoung (Department of Environmental and Energy Engineering, Anyang University) ;
  • Chang, Limseok (Air Quality Forecasting Center, National Institute of Environmental Research) ;
  • Lee, Jaebum (Air Quality Forecasting Center, National Institute of Environmental Research) ;
  • Lee, Younghee (Air Quality Forecasting Center, National Institute of Environmental Research) ;
  • Myoung, Jisu (Air Quality Forecasting Center, National Institute of Environmental Research) ;
  • Kim, Taehee (Air Quality Forecasting Center, National Institute of Environmental Research) ;
  • Koo, Younseo (Department of Environmental and Energy Engineering, Anyang University)
  • 투고 : 2018.11.19
  • 심사 : 2018.12.21
  • 발행 : 2018.12.31

초록

동아시아지역을 대상으로 황사배출량 산정 모듈 및 이를 적용한 예보시스템을 개발하였고, 개발된 모형의 화학수송모델링 정합도 및 실시간 예보 운영 평가를 진행하였다. 2015년 화학수송모델링 정합도 평가 결과, 중국 지역에서는 황사 배출량을 적용한 예보 모형이 과대평가하는 기간이 있으나 대부분 지역에서 저평가 되었던 $PM_{10}$ 을 보완하고, 통계수치가 개선되는 것을 확인할 수 있었다. 한국 지역에서는 황사 발생일인 2월 22일~24일, 3월 16일~17일(서울지역대상)에는 황사의 유입을 적절히 모사하였으나 황사가 관측되지 않은 4월에는 황사를 적용한 예보모델이 과대평가하는 것을 확인할 수 있었다. 그러나 황사를 적용한 예보모형은 한반도 대부분 지역에서 저평가 되었던 $PM_{10}$ 을 보완하고, 통계수치가 개선되는 것을 확인할 수 있었다. 2017년 예보 성능 평가 결과, 황사배출량을 적용한 예보모델은 기존 모델과 비교하였을 때, POD는 대부분 개선되지만, A는 유사 또는 감소, FAR는 대부분 증가하는 경향이 나타났다. 황사배출량을 적용한 예보모형은 동아시아 지역에 저평가 하고 있는 $PM_{10}$ 을 보완하는 장점이 있지만, 황사배출량 산정의 불확실성 등이 내제되어 모델이 측정값을 과대모의하여 오경보율이 높다. 따라서 한반도 지역에 대표 대기질 예보모형으로 사용하기는 부적절하다고 판단된다. 그러나 황사 기간에는 황사배출량 모델의 모사성능은 우수하였으므로, 황사가 발생하는 기간에는 기존 모델과 융합하여 예보관이 예보하는 것이 필요하다고 사료된다.

Air quality forecasting system with Asian dust emissions was developed in East Asia, and $PM_{10}$ forecasting performance of chemical transport model with Asian dust emissions was validated and evaluated. The chemical transport model (CTM) with Asian dust emission was found to supplement $PM_{10}$ concentrations that had been under-estimated in China regions and improved statistics for performance of CTM, although the model were overestimated during some periods in China. In Korea, the prediction model adequately simulated inflow of Asian dust events on February 22~24 and March 16~17, but the model is found to be overestimated during no Asian dust event periods on April. However, the model supplemented $PM_{10}$ concentrations, which was underestimated in most regions in Korea and the statistics for performance of the models were improved. The $PM_{10}$ forecasting performance of air quality forecasting model with Asian dust emissions tends to improve POD (Probability of Detection) compared to basic model without Asian dust emissions, but A (Accuracy) has shown similar or decreased, and FAR (False Alarms) have increased during 2017.Therefore, the developed air quality forecasting model with Asian dust emission was not proposed as a representative $PM_{10}$ forecast model in South Korea.

키워드

과제정보

연구 과제 주관 기관 : 국립환경과학원

참고문헌

  1. Lee, S., Ho, C. H., and Choi, Y. S., "High-PM10 concentration episodes in Seoul, Korea: background sources and related meteorological conditions," Atmos. Environ. 45(39), 7240-7247 (2011). https://doi.org/10.1016/j.atmosenv.2011.08.071
  2. Lee, S., Ho, C. H., Lee, Y. G., Choi, H. J., and Song, C. K., "Influence of transboundary air pollutants from China on the high PM10 episode in Seoul, Korea for the period October 16-20," 2008, Atmos. Environ., 77, 430-439 (2013). https://doi.org/10.1016/j.atmosenv.2013.05.006
  3. Koo, Y. S., Kim, S. T., Yun, H. Y., Han, J. S., Lee, J. Y., Kim, K. H., and Jeon, E. C., "The simulation of aerosol transport over East Asia region", Atmos. Res., 90, 264-271 (2008). https://doi.org/10.1016/j.atmosres.2008.03.014
  4. Koo, Y. S., Kim, S. T., Cho, J. S., and Jang, Y. K., "Performance evaluation of the updated air quality forecasting system for Seoul predicting PM10," Atmos. Environ., 58, 56-69 (2012). https://doi.org/10.1016/j.atmosenv.2012.02.004
  5. Koo, Y. S., Choi, D. R., Kwon, H. Y., Jang, Y. K., and Han, J. S., "Improvement of PM10 prediction in East Asia using inverse modeling," Atmos. Environ., 106, 318-328 (2015). https://doi.org/10.1016/j.atmosenv.2015.02.004
  6. Koo, Y. S., Yun, H. Y., Choi, D. R., Han, J. S., Lee, J. B., and Lim, Y. J., "An analysis of chemical and meteorological characteristics of haze events in the Seoul metropolitan area during January 12-18," 2013, Atmos. Environ., 178, 87-100 (2018). https://doi.org/10.1016/j.atmosenv.2018.01.037
  7. Park, S. S., Jung, S. A., Gong, B. J., Cho, S. Y., and Lee, S. J., "Characteristics of PM2.5 haze episodes revealed by highly time-resolved measurements at an air pollution monitoring supersite in Korea," AAQR, 13, 957-976 (2013).
  8. Park, S. U., Cho, J. H., and Park, M. S., "Analyses of high aerosol concentration events (dense haze/mist) occurred in East Asia during 10-16 January 2013 using the data simulated by the aerosol modeling system," Int. J. Chem., 3, 10-26 (2013).
  9. Choi, D. R., Koo, Y. S., Jo, J. S., Jang, Y. K., Lee, J. B., and Park, H. J., "The effect of dust emissions on PM10 concentration in East Asia (English abstract)," KOSAE, 32, 32-45 (2016). https://doi.org/10.5572/KOSAE.2016.32.1.032
  10. Huang, Q., Cheng, S., Li, J., Chen, D., Wang, H., and Guo, X., "Assessment of PM10 emission sources for priority regulation in urban air quality management using a new coupled MM5-CAMx-PSAT modeling approach," Environ. Eng. Sci., 29(5), 343-349 (2012). https://doi.org/10.1089/ees.2011.0229
  11. In, H. J. and Kim, Y. P., "Estimation of the aerosol optical thickness distribution in the Northeast Asian forest fire in May 2003: possible missing emissions," Atmos. Res., 98, 261-273 (2010). https://doi.org/10.1016/j.atmosres.2010.09.009
  12. Li, L., Cheng, S., Li, J., Lang, J., and Chen, D., "Application of MM5-CAMx-PSAT modeling approach for investigating emission source contribution to atmospheric SO2 pollution in Tangshan, Northern China," Math. Probl. Eng. (2013).
  13. Chatani, S., Morikawa, T., Nakatsuka, S., Matsunaga, S., and Minoura, H., "Development of a framework for a high-resolution, three-dimensional regional air quality simulation and its application to predicting future air quality over Japan," Atmos. Environ., 45 (7), 1383-1393 (2011). https://doi.org/10.1016/j.atmosenv.2010.12.036
  14. Park, Y. S., Jang, I. S., and Cho, S. Y., "An Analysis on Effects of the initial conditoin and Emission on PM10 Forecasting with Data Assimilation," KOSAE, 31(5), 430-436 (2015). https://doi.org/10.5572/KOSAE.2015.31.5.430
  15. Park, S. U., Cho, J. H., and Park, M. S., "Analyses of high aerosol concentration events (dense haze/mist) occurred in East Asia during 10-16 January 2013 using the data simulated by the Aerosol Modeling System," Int. J. Chem., 2(3), 10-26 (2013).
  16. In, H. J. and Park, S. U., "A simulation of long-range transport of Yellow Sand observed in April 1998 in Korea," Atmos Environ, 36, 4173-4187 (2002). https://doi.org/10.1016/S1352-2310(02)00361-8
  17. In, H. J. and Park, S. U., "The soil particle size-dependent emission parameterization for an Asian dust (Yellow Sand) observed in Korea on April 2002," Atmos Environ, 37, 4625-4636 (2003). https://doi.org/10.1016/j.atmosenv.2003.07.009
  18. Lee, E. H. and Park, S. U., "A numerical simulation of an Asian dust (Hwangsa) event observed in Korea on March 10-12, 2004 using the modified ADAM model," Adv Geosci, 5, 67-76 (2005).
  19. Park. S. U., Choe, A., Lee, E. H., Park, M. S., and Song, X., "The Asian Dust Aerosol Model2 (ADAM2) with the use of Normalized Difference Vegetation Index (NDVI) obtained from the Spot4/vegetation data," Theor. Appl. Climatol., 101(1), 191-208 (2010). https://doi.org/10.1007/s00704-009-0244-4
  20. Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T., "An Asian emission inventory of anthropogenic emission sources for the period 1980-2020," Atmos. Chem. Phys., 7, 4419-4444 (2007). https://doi.org/10.5194/acp-7-4419-2007
  21. Lee, D., Lee, Y., Jang, K., Yoo, C., Kang, K., Lee, J., Jung, S., Park, J., Lee, S., Han, J., Hong, J., and Lee, S., "Korean National Emissions Inventory System and 2007 Air Pollutant Emissions," Asian Journal of Atmospheric Environment, 5-4, 278-291 (2011b).
  22. ENVIRON, "User's guide to the Comprehensive Air Quality Model with Extensions (CAMx). Version 6.0," (2012).
  23. U.S. Environmental Protection Agency, "Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5, and Regional Haze, Office of Air Quality Planning and Standards, Air Quality Analysis Division," Air Quality Modeling Group, Research Triangle Park, North Carolina (2007).