참고문헌
- G.A. Florides, P. Christodoulides, Global warming and carbon dioxide through sciences, Environment International, 35, 390-401 (2009) https://doi.org/10.1016/j.envint.2008.07.007
-
M. Irani, M. Fan, H. Ismail, A. Tuwati, B. Dutcher, A.G. Russell, Modified nanosepiolite as an inexpensive support of tetraethylenepentamine for
$CO_2$ sorption, Nano Energy, 11, 235-246 (2015) https://doi.org/10.1016/j.nanoen.2014.11.005 - J. Stacy, Y.N. Regmi, B. Leonard, M. Fan, The recent progress and future of oxygen reduction reaction catalysis: A review, Renewable and Sustainable Energy Reviews, 69, 401-414 (2017) https://doi.org/10.1016/j.rser.2016.09.135
- R. O'Hayre, S.-W. Cha, W. Colella, F.B. Prinz, Fuel cell fundamentals, John Wiley & Sons (2006)
- Y. Li, J. Yang, J. Song, Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles, Renewable and Sustainable Energy Review, 67, 160-172 (2017) https://doi.org/10.1016/j.rser.2016.09.030
- B.D. James, J. Kalinoski, K, Baum, Manufacturing Cost Analysis of Fuel Cell Systems; U.S. DOE Hydrogen Program Annual Merit Review and Peer Evaluation, U.S. Department of Energy, Arlington, VA, USA, (2011)
- M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells, Nature, 486, 43-51 (2012) https://doi.org/10.1038/nature11115
- P.J. Ferreira, G.J. la O', Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H.A. Gasteiger, Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells - A mechanistic investigation, Journal of the Electrochemical Society, 152, A2256-A2271 (2005) https://doi.org/10.1149/1.2050347
- N. Yousfi-Steiner, P. Mocoteguy, D. Candusso, D. Hissel, A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, consequences and diagnostic for mitigation, Journal of Power Sources, 194, 130-145 (2009) https://doi.org/10.1016/j.jpowsour.2009.03.060
- D. Garrain, Y. Lechon, C.D.L. Rua, Polymer electrolyte membrane fuel cells (PEMFC) in automotive applications: environmental relevance of the manufacturing stage, Smart Grid Renewable Energy, 2, 68-74 (2011) https://doi.org/10.4236/sgre.2011.22009
- I. Katsounaros, S. Cherevko, A.R. Zeradjanin, K.J.J. Mayrhofer, Oxygen electrochemistry as a cornerstone for sustainable energy conversion, Angewandte Chemie-International Edition, 53, 102-121 (2014) https://doi.org/10.1002/anie.201306588
- J. Greeley, I.E.L. Stephens, A.S. Bondarenko, T.P. Johansson, H.A. Hansen, T.F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J.K. Norskov, Alloys of platinum and early transition metals as oxygen reduction electrocatalysts, Nature Chemistry, 1, 552-556 (2009) https://doi.org/10.1038/nchem.367
- J.K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, Journal of Physical Chemistry B, 108, 17886-17892 (2004) https://doi.org/10.1021/jp047349j
- K. Jiang, H.X. Zhang, S.Z. Zou, W.B. Cai, Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications, Physical Chemistry Chemical Physics, 16, 20360-20376 (2014) https://doi.org/10.1039/C4CP03151B
- Kuttiyiel KA, et al. Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction. Energy & Environmental Science, 5, 5297-5304 (2012) https://doi.org/10.1039/C1EE02067F
- Stamenkovic VR, et al. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science, 315, 493-497 (2007) https://doi.org/10.1126/science.1135941
- Y.H. Bing, H.S. Liu, L. Zhang, D. Ghosh, J.J. Zhang, Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction, Chemical Society Reviews, 39, 2184-2202 (2010) https://doi.org/10.1039/b912552c
- C. Chen, Y. J. Kang, Z. Y. Huo,Z. W. Zhu, W. Y. Huang, H. L. L. Xin, J. D. Snyder, D. G. Li,J. A. Herron, M. Mavrikakis, M. F. Chi, K. L. More, Y. D. Li,N. M. Markovic, G. A. Somorjai, P. D. Yang, Highly crystalline multimetallic nanoframes with threedimensional electrocatalytic surfaces, Science, 343, 1339-1343 (2014) https://doi.org/10.1126/science.1249061
- P.J. Ferreira, G.J. la O', Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H.A. Gasteiger, Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells: A mechanistic investigation, Journal of the Electrochemical Society, 152, A2256-A2271 (2005) https://doi.org/10.1149/1.2050347
- S.H. Sun, G.X. Zhang, D.S. Geng, Y.G. Chen, R.Y. Li, M. Cai, X.L. Sun, A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal, Angewandte Chemie-International Edition, 50, 422-426 (2011) https://doi.org/10.1002/anie.201004631
- O.-H. Kim, Y.-H. Cho, S.H. Kang, H.-Y. Park, M. Kim, J.W. Lim, D.Y. Chung, M.J. Lee, H. Choe, Y.-E. Sung, Ordered macroporous platinum electrode and enhanced mss transfer in fuel cells using inverse opal structure, Nature Communication, 4, 2473, (2013) https://doi.org/10.1038/ncomms3473
- J. Kibsgaard, Y. Gorlin, Z. Chen, T. F. Jaramillo, Meso-structured platinum thin film: Active and stable electrocatalysts for the oxygen reduction reaction, Journal of the American Chemical Society, 134, 7758-7765 (2012) https://doi.org/10.1021/ja2120162
- L. Cademartiri, G.A. Ozin, Ultrathin nanowires - A materials chemistry perspective, Advanced Materials, 21, 1013-1020 (2009) https://doi.org/10.1002/adma.200801836
- J.T. Zhang, C.M. Li, Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems, Chemical Society Reviews, 41, 7016-7031 (2012) https://doi.org/10.1039/c2cs35210a
- C. Koenigsmann, W.-p. Zhou, R.R. Adzic, E. Sutter, S.S. Wong, Size-dependent enhancement of electrocatalytic performance in relatively defect-free, processed ultrathin platinum nanowires, Nano Letters, 10, 2806-2811 (2010) https://doi.org/10.1021/nl100718k
- C. Koenigsmann, S.S. Wong, One-dimensional noble metal electrocatalysts: a promising structural paradigm for direct methanol fuel cells, Energy & Environmental Science, 4, 1161-1176 (2016)
- H. Tang, Z. Qi, M. Ramani and J. F. Elter, PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode, Journal of Power Sources, 158, 1306-1312 (2006) https://doi.org/10.1016/j.jpowsour.2005.10.059
- K. K. Tintula, A. Jalajakshi, A. K. Sahu, S. Pitchumani, P. Sridhar, A. K. Shukla Durability of Pt/C and Pt/MC-PEDOT Catalysts under Simulated Start-stop Cycles in Polymer Electrolyte Fuel cells, Fuel Cells, 13, 158-166 (2013) https://doi.org/10.1002/fuce.201200158
- J. C. Meier, C. Galeano, I. Katsounaros, J. Witte, H. J. Bongard, A. A. Topalov, C. Baldizzone, S. Mezzavilla, F. Schith, K. J. J. Mayrhofer, Design criteria for stable Pt/C fuel cell catalysts, Beilstein Journal of Nanotechnol, 5, 44 - 67 (2014) https://doi.org/10.3762/bjnano.5.5
- W.C. Choi, S.I. Woo, Bimetallic Pt-Ru nanowire network for anode material in a direct-methanol fuel cell, Journal of Power Sources, 124, 420-425 (2003) https://doi.org/10.1016/S0378-7753(03)00812-7
- G.Y. Zhao, C.L. Xu, D.J. Guo, H. Li, H.L. Li, Template preparation of Pt nanowire array electrode on Ti/Si substrate for methanol electro-oxidation, Applied Surface Science, 253, 3242-3246 (2007) https://doi.org/10.1016/j.apsusc.2006.07.015
- L.X. Ding, G.R. Li, Z.L. Wang, Z.Q. Liu, H. Liu, Y.X. Tong, Porous Ni@Pt core-shell nanotube array electrocatalyst with high activity and stability for methanol oxidation, Chemistry-A European Journal, 18, 8386-8391 (2012) https://doi.org/10.1002/chem.201200009
- S.M. Choi, J.H. Kim, J.Y. Jung, E.Y. Yoon, W.B. Kim, Pt nanowires prepared via a polymer template method: Its promise toward high Pt-loaded electrocatalysts for methanol oxidation, Electrochimica Acta, 53, 5804-5811 (2008) https://doi.org/10.1016/j.electacta.2008.03.041
- Y. Lee, J. Kim, D.S. Yun, Y.S. Nam, Y. Shao-Horn, A.M. Belcher, Virus-templated Au and Au-Pt coreshell nanowires and their electrocatalytic activities for fuel cell applications, Energy & Environmental Science, 5, 8328-8334 (2012) https://doi.org/10.1039/c2ee21156d
- X.F. Lu, C. Wang, Y. Wei, One-dimensional composite nanomaterials: synthesis by electrospinning and their applications, Small, 5 2349-2370 (2009) https://doi.org/10.1002/smll.200900445
- S. Du, Pt-based nanowires as electrocatalysts in proton exchange fuel cells, International Journal of Low-Carbon Technologies, 7, 44-54 (2012) https://doi.org/10.1093/ijlct/ctr027
- A.C. Chen, P. Holt-Hindle, Platinum-based nanostructured materials: synthesis, properties, and applications, Chemical Reviews, 110, 3767-3804 (2010) https://doi.org/10.1021/cr9003902
- Y. Liu, D.G. Li, S.S. Sun, Pt-based composite nanoparticles for magnetic, catalytic, and biomedical applications, Journal of Materials Chemistry, 21, 12579-12587 (2011) https://doi.org/10.1039/c1jm11605c
- M.L. Calegaro, H.B. Suffredini, S.A.S. Machado, L.A. Avaca, Preparation, characterization and utilization of a new electrocatalyst for ethanol oxidation obtained by the sol-gel method, Journal of Power Sources, 156, 300-305 (2006) https://doi.org/10.1016/j.jpowsour.2005.06.015
- M.R. Gao, J. Jiang, S.H. Yu, Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR), Small, 8,13-27 (2012) https://doi.org/10.1002/smll.201101573
- S. Sun, D. Yang, G. Zhang, E. Sacher, J.P. Dodelet, Synthesis and characterization of platinum nanowire-carbon nanotube heterostructures, Chemistry of Materials, 19, 6376-6378 (2007) https://doi.org/10.1021/cm7022949
- W.J. Khudhayer, N.N. Kariuki, X.P. Wang, D.J. Myers, A.U. Shaikh, T. Karabacak, Oxygen reduction reaction electrocatalytic activity of glancing angle deposited Platinum nanorod arrays, Journal of the Electrochemical Society, 158, B1029-B1041 (2011) https://doi.org/10.1149/1.3599901
- J. Xu, G. Fu, Y. Tang, Y. Zhou, Y. Chen, T. Lu, One-pot synthesis of three-dimensional platinum nanochain networks as stable and active electrocatalysts for oxygen reduction reactions, Journal of Materials Chemistry, 22, 13585-13590 (2012) https://doi.org/10.1039/c2jm32012f
- Q. Xiao, M. Cai, M. Balogh, M. Tessema, Y. Lu, Symmetric growth of Pt ultrathin nanowires from dumbbell nuclei for use as oxygen reduction catalysts, Nano Research, 5, 145-151 (2012) https://doi.org/10.1007/s12274-012-0191-8
- L.Y. Ruan, E.B. Zhu, Y. Chen, Z.Y. Lin, X.Q. Huang, X.F. Duan, Y. Huang, Biomimetic synthesis of an ultrathin platinum nanowire network with a high twin density for enhanced electrocatalytic activity and durability, Angewandte Chemie-International Edition, 52, 12577-12581 (2013) https://doi.org/10.1002/anie.201304658
- A.B. Papandrew, R.W. Atkinson, G.A. Goenaga, S.S. Kocha, J.W. Zack, B.S. Pivovar, T.A. Zawodzinski, Oxygen reduction activity of vapor-grown platinum nanotubes, Journal of the Electrochemical Society, 160, F848-F852 (2013) https://doi.org/10.1149/2.090308jes
- S.M. Alia, G. Zhang, D. Kisailus, D. Li, S. Gu, K. Jensen, Y. Yan, Porous platinum nanotubes for oxygen reduction and methanol oxidation reactions, Advanced Functional Materials, 20, 3742-3746 (2010) https://doi.org/10.1002/adfm.201001035
- S. Ci, J. Zou, G. Zeng, S. Luo, Z. Wen, Single crystalline Pt nanotubes with superior electrocatalytic stability, Journal of Materials Chemistry, 22, 16732-16737 (2012) https://doi.org/10.1039/c2jm32508j
- W.T. Yu, M.D. Porosoff, J.G.G. Chen, Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts, Chemical Reviews, 112, 5780-5817 (2012) https://doi.org/10.1021/cr300096b
- C. Koenigsmann, M.E. Scofield, H. Liu, S.S. Wong, Designing enhanced one-dimensional electrocatalysts for the oxygen reduction reaction: probing size- and composition-dependent electrocatalytic behavior in noble metal nanowires, The Journal of Physical Chemistry Letters, 3, 3385-3398 (2012) https://doi.org/10.1021/jz301457h
- R. Carrera-Cerritos, V. Baglio, A.S. Arico, J. Ledesma-Garcia, M.F. Sgroi, D. Pullini, A.J. Pruna, D.B. Mataix, R. Fuentes-Ramirez, L.G. Arriaga, Improved Pd electro-catalysis for oxygen reduction reaction in direct methanol fuel cell by reduced graphene oxide, Applied Catalysis B: Environmental, 144, 554-560 (2014) https://doi.org/10.1016/j.apcatb.2013.07.057
- Z. Zhu, Y. Zhai, C. Zhu, Z. Wang, S. Dong, Bimetallic alloy nanowires and nanosponges: A comparative study of peroxidase mimetics and as enhanced catalysts for oxygen reduction reaction, Electrochemistry Communications, 36, 22-25 (2013) https://doi.org/10.1016/j.elecom.2013.08.024
- Y.Z. Lu, Y.Y. Jiang, W. Chen, PtPd porous nanorods with enhanced electrocatalytic activity and durability for oxygen reduction reaction, Nano Energy, 2, 836-844 (2013) https://doi.org/10.1016/j.nanoen.2013.02.006
- T.H. Yeh, C.W. Liu, H.S. Chen, K.W. Wang, Preparation of carbon-supported PtM (M = Au, Pd, or Cu) nanorods and their application in oxygen reduction reaction, Electrochemistry Communications, 31, 125-128 (2013) https://doi.org/10.1016/j.elecom.2013.03.025
- Y.C. Tseng, H.S. Chen, C.W. Liu, T.H. Yeh, K.W. Wang, The effect of alloying on the oxygen reduction reaction activity of carbon-supported PtCu and PtPd nanorods, Journal of Materials Chemistry A, 2, 4270-4275 (2014) https://doi.org/10.1039/C3TA14705C
- Z. Duan, G. Wang, A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M = Ni, Co, or Fe), Physical Chemistry Chemical Physics, 13, 20178-20187 (2011) https://doi.org/10.1039/c1cp21687b
- I.E.L. Stephens, A.S. Bondarenko, U. Gronbjerg, J. Rossmeisl, I. Chorkendorff, Understanding the electrocatalysis of oxygen reduction on platinum and its alloys, Energy & Environmental Science, 5, 6744-6762 (2012) https://doi.org/10.1039/c2ee03590a
- J.I. Shui, C. Chen, J.C.M. Li, Evolution of nanoporous Pt-Fe alloy nanowires by dealloying and their catalytic property for oxygen reduction reaction, Advanced Functional Materials, 21, 3357-3362 (2011) https://doi.org/10.1002/adfm.201100723
- Z. Zhang, M. Li, Z. Wu, W. Li, Ultra-thin PtFe-nanowires as durable electrocatalysts for fuel cells, Nanotechnology, 22, 015602 (2011) https://doi.org/10.1088/0957-4484/22/1/015602
- S.J. Guo, D.G. Li, H.Y. Zhu, S. Zhang, N.M. Markovic, V.R. Stamenkovic, S.H. Sun, FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction, Angewandte Chemie-International Edition, 52, 3465-3468 (2013) https://doi.org/10.1002/anie.201209871
- N.N. Kariuki, W.J. Khudhayer, T. Karabacak, D.J. Myers, GLAD Pt-Ni alloy nanorods for oxygen reduction reaction, ACS Catalysis, 3, 3123-3132 (2012)
- S.W. Chou, J.J. Shyue, C.H. Chien, C.C. Chen, Y.Y. Chen, P.T. Chou, Surfactant-directed synthesis of ternary nanostructures: nanocubes, polyhedrons, octahedrons, and nanowires of PtNiFe. their shape-dependent oxygen reduction activity, Chemistry of Materials, 24, 2527-2533 (2012) https://doi.org/10.1021/cm301039a
- L.C. Liu, G. Samjeske, S. Takao, K. Nagasawa, Y. Lwasawa, Fabrication of PtCu and PtNiCu multinanorods with enhanced catalytic oxygen reduction activities, Journal of Power Sources, 253, 1-8 (2014) https://doi.org/10.1016/j.jpowsour.2013.12.028
- H.H. Li, C.H. Cui, S. Zhao, H.B. Yao, M.R. Gao, F.J. Fan, S.H. Yu, Mixed-PtPd-shell PtPdCu nanoparticle nanotubes templated from copper nanowires as efficient and highly durable electrocatalysts, Advanced Energy Materials, 2, 1182-1187 (2012) https://doi.org/10.1002/aenm.201200207
- L. Liu, E. Pippel, Low-platinum- content quaternary PtCuCoNi nanotubes with markedly enhanced oxygen reduction activity, Angewandte Chemie International Edition, 50, 2729-2733 (2011) https://doi.org/10.1002/anie.201006644
- M. Oezaslan, F. Hasche, P. Strasser, Pt-based core-shell catalyst architectures for oxygen fuel cell electrodes, The Journal of Physical Chemistry Letters, 4, 3273-3291 (2013) https://doi.org/10.1021/jz4014135
- S.J. Hwang, S.J. Yoo, J. Shin, Y.H. Cho, J.H. Jang, E. Cho, Y.E. Sung, S.W. Nam, T.H. Lim, S.C. Lee, S.K. Kim, Supported core@shell electrocatalysts for fuel cells: close encounter with reality, Scientific Reports, 3, 1309 (2013) https://doi.org/10.1038/srep01309
- S.M. Alia, K. Jensen, C. Contreras, F. Garzon, B. Pivovar, Y. Yan, Platinum coated copper nanowires and Platinum nanotubes as oxygen reduction electrocatalysts, ACS Catalysis, 3, 358-362 (2013) https://doi.org/10.1021/cs300664g
- S.M. Alia, K.O. Jensen, B.S. Pivovar, Y. Yan, Platinum-coated palladium nanotubes as oxygen reduction reaction electrocatalysts, ACS Catalysis, 2, 858-863 (2012) https://doi.org/10.1021/cs200682c
- C.W. Liu, Y.C. Wei, C.C. Liu, K.W. Wang, Pt-Au core/shell nanorods: preparation and applications as electrocatalysts for fuel cells, Journal of Materials Chemistry, 22, 4641-4644 (2012) https://doi.org/10.1039/c2jm16407h
- H. Zhu, S. Zhang, S. Guo, D. Su, S. Sun, Synthetic control of FePtM nanorods (M = Cu, Ni) to enhance the oxygen reduction reaction, Journal of the American Chemical Society, 135, 7130-7133 (2013) https://doi.org/10.1021/ja403041g
- S. Guo, S. Zhang, D. Su, S. Sun, Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their eletrocatalysis for oxygen reduction reaction (2013)
- C. Koenigsmann, A.C. Santulli, E. Sutter, S.S. Wong, Ambient surfactantless synthesis, growth mechanism, and size-dependent electrocatalytic behavior of high-quality, single crystalline palladium nanowires, ACS Nano, 5, 7471-7487 (2011) https://doi.org/10.1021/nn202434r
- S.M. Alia, K. Duong, T. Liu, K. Jensen, Y. Yan, Palladium and gold nanotubes as oxygen reduction reaction and alcohol oxidation reaction catalysts in base, ChemSusChem, 1739-1744 (2014)
- F.J. Yu, W.Z. Zhou, R.M. Bellabarba, R.P. Tooze, One-step synthesis and shape-control of CuPd nanowire networks, Nanoscale, 6, 1093-1098 (2014) https://doi.org/10.1039/C3NR04223E
- Z. Zhang, K.L. More, K. Sun, Z. Wu, W. Li, Preparation and characterization of PdFe nanoleaves as electrocatalysts for oxygen reduction reaction, Chemistry of Materials, 23, 1570-1577 (2011) https://doi.org/10.1021/cm1034134
- W. Sun, A. Hsu, R.R. Chen, Palladium-coated manganese dioxide catalysts for oxygen reduction reaction in alkaline media, Journal of Power Sources, 196, 4491-4498 (2011) https://doi.org/10.1016/j.jpowsour.2011.01.031
- X.R. Li, X.L. Li, M.C. Xu, J.J. Xu, H.Y. Chen, Gold nanodendrities on graphene oxide nanosheets for oxygen reduction reaction, Journal of Materials Chemistry A, 2, 1697-1703 (2014) https://doi.org/10.1039/C3TA14276K
- C. Koenigsmann, E. Sutter, T.A. Chiesa, R.R. Adzic, S.S. Wong, Highly enhanced electrocatalytic oxygen reduction performance observed in bimetallic palladium-based nanowires prepared under ambient, surfactantless conditions, Nano Letters, 12, 2013-2020 (2012) https://doi.org/10.1021/nl300033e
- Y.Z. Lu, Y.C. Wang, W. Chen, Silver nanorods for oxygen reduction: Strong effects of protecting ligand on the electrocatalytic activity, Journal of Power Sources, 196, 3033-3038 (2011) https://doi.org/10.1016/j.jpowsour.2010.11.119
-
S. Liu, Z. Zhang, J. Bao, Y. Lan, W. Tu, M. Han, Z. Dai, Controllable synthesis of tetragonal and cubic phase
$Cu_2Se$ nanowires assembled by small nanocubes and their electrocatalytic performance for oxygen reduction reaction, The Journal of Physical Chemistry C, 117, 15164-15173 (2013) https://doi.org/10.1021/jp4044122 - Z. Yang, X.M. Zhou, H.G. Nie, Z. Yao, S.M. Huang, Facile construction of manganese oxide doped carbon nanotube catalysts with high activity for oxygen reduction reaction and investigations into the origin of their activity enhancement, ACS Applied Materials & Interfaces, 3, 2601-2606 (2011) https://doi.org/10.1021/am200426q
- J.S. Lee, G.S. Park, H.I. Lee, S.T. Kim, R.G. Cao, M.L. Liu, J. Cho, Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions, Nano Letters, 11, 5362-5366 (2011) https://doi.org/10.1021/nl2029078
-
T.N. Lambert, D.J. Davis, W. Lu, S.J. Limmer, P.G. Kotula, A. Thuli, M. Hungate, G.D. Ruan, Z. Jin, J.M. Tour, Graphene-Ni-
${\alpha}$ -MnO2 and -Cu-${\alpha}$ -MnO2 nanowire blends as highly active non-precious metal catalysts for the oxygen reduction reaction, Chemical Communications, 48, 7931-7933 (2012) https://doi.org/10.1039/c2cc32971a - G. Tuci, C. Zafferoni, P. D'Ambrosio, S. Caporali, M. Ceppatelli, A. Rossin, T. Tsoufis, M. Innocenti, G. Giambastiani, Tailoring carbon nanotube N-dopants while designing metal-free electrocatalysts for the oxygen reduction reaction in alkaline medium, ACS Catalysis, 3, 2108-2111 (2013) https://doi.org/10.1021/cs400379h
- A. Zhao, J. Masa, W. Schuhmann, W. Xia, Activation and stabilization of nitrogen-doped carbon nanotubes as electrocatalysts in the oxygen reduction reaction at strongly alkaline conditions, The Journal of Physical Chemistry C, 117, 24283-24291 (2013) https://doi.org/10.1021/jp4059438
- H.T. Chung, D.A. Cullen, D. Higgins, B.T. Sneed, E.F. Holby, K.L. More, P. Zelenay, Direct atomiclevel insight into the active sites of a high-performance PGM-free ORR catalyst, Science, 357, 479-483 (2017) https://doi.org/10.1126/science.aan2255
- W.H. Lee, H. Kim, Electrocatalytic activity and durability study of carbon supported Pt nanodendrites in polymer electrolyte membrane fuel cells, International Journal of Hydrogen Energy, 38, 7126-7132 (2013) https://doi.org/10.1016/j.ijhydene.2013.04.002
- M.-T. Sung, M.-H. Chang, M.-H. Ho, Investigation of cathode electrocatalysts composed of electrospun Pt nanowires and Pt/C for proton exchange membrane fuel cells, Journal of Power Sources, 249, 320-326 (2014) https://doi.org/10.1016/j.jpowsour.2013.10.119
- B. Li, D.C. Higgins, Q.F. Xiao, D.J. Yang, C.M. Zhng, M. Cai, Z.W. Chen, J.X. Ma, The durability of carbon supported Pt nanowire as novel cathode catalyst for a 1.5 kW PEMFC stack, Applied Catalysis B-Environmental, 162, 133-140 (2015) https://doi.org/10.1016/j.apcatb.2014.06.040
- M.K. Debe, Nanostructured thin film electrocatalysts for PEM fuel cells - A tutorial on the fundamental characteristics and practical properties of NSTF Catalysts, Tutorials on Electrocatalysis in Low Temperature Fuel Cells, 45, 47-68 (2012)
- S.F. Du, A facile route for polymer electrolyte membrane fuel cell electrodes with in situ grown Pt nanowires, Journal of Power Sources, 195, 289-292 (2010) https://doi.org/10.1016/j.jpowsour.2009.06.091
- S.F. Du, B. Millington, B.G. Pollet, The effect of Nafion ionomer loading coated on gas diffusion electrodes with in-situ grown Pt nanowires and their durability in proton exchange membrane fuel cells, International Journal of Hydrogen Energy, 36, 4386-4393 (2011) https://doi.org/10.1016/j.ijhydene.2011.01.014
- S.F. Du, B.G. Pollee, Catalyst loading for Pt-nanowire thin film electrodes in PEFCs, International Journal of Hydrogen Energy, 37, 17892-17898 (2012) https://doi.org/10.1016/j.ijhydene.2012.08.148
- S.F. Du, K.J. Lin, S.K. Malladi, Y.X. Lu, S.H. Sun, Q. Xu, R. Steinberger-Wilckens, H.S. Dong, Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells, Scientific Reports, 4, 6439 (2014)