DOI QR코드

DOI QR Code

Preventive Effects of Whole Grain Cereals on Sarcopenic Obesity in High-fat Diet-induced Obese Mice

고지방식이 동물모델에서 통곡물 시리얼의 근감소성 비만 예방 효과

  • Kim, Mi-Bo (Department of Biotechnology, Yonsei University) ;
  • Lee, Sein (Graduate Program in Biomaterials Science & Engineering, Yonsei University) ;
  • Kim, Changhee (Department of Biotechnology, Yonsei University) ;
  • Hwang, Jae-Kwan (Department of Biotechnology, Yonsei University)
  • 김미보 (연세대학교 생명공학과) ;
  • 이세인 (연세대학교 생물소재공학협동과정) ;
  • 김창희 (연세대학교 생명공학과) ;
  • 황재관 (연세대학교 생명공학과)
  • Received : 2018.10.04
  • Accepted : 2018.11.08
  • Published : 2018.11.30

Abstract

Whole grain cereal (WGC)-rich diets provide macronutrients that are important for the regulation of energy metabolism. The current study evaluated whether WGCs had a preventive effect on sarcopenic obesity in high-fat diet (HFD)-induced obese mice. C57BL/6N mice were fed a normal diet (ND), ND+WGC, HFD, and HFD+WGC for 12 weeks. WGCs significantly reduced body weight gain, food efficiency ratio, fat mass, and adipocyte size in HFD-induced obese mice. WGCs attenuated HFD-induced nonalcoholic fatty liver disease by decreasing liver weight and hepatic fat accumulation. In addition, WGCs increased muscle strength and muscle mass in HFD-induced obese mice as well as in ND mice. Taken together, WGCs can be employed as functional food materials for the prevention of sarcopenic obesity by inhibiting fat accumulation and increasing muscle mass.

통곡물 시리얼(Whole grain cereal, WGC)이 함유된 식이는 에너지 대사 조절에 중요한 다량영양소(macronutrients)를 제공한다. 본 연구는 고지방식이(high-fat diet, HFD)로 유발된 비만 마우스를 이용하여 WGC의 근감소성 비만 예방 효과에 대해 평가하였다. C57BL/6N 마우스에 정상식이(normal diet, ND), ND+WGC, HFD, HFD+WGC를 12주 동안 제공하였다. WGC는 체중, 식이효율, 체지방 및 지방세포의 크기를 감소시켰다. 또한, WGC는 간 무게 및 간에 축적된 지방을 감소시킴으로써 HFD에 의한 비알코올성 지방간을 개선시켰다. 더욱이, WGC는 비만 마우스 및 정상 마우스의 근육 무게 및 근력을 증가시켰다. 따라서, WGC는 지방 축적을 억제하고 근육량을 증가시키므로 근감소성 비만 예방을 위한 기능성 식품으로 사용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

Supported by : 농림수산식품기술기획평가원

References

  1. Akhmedov D, Berdeaux R. 2013. The effects of obesity on skeletal muscle regeneration. Front. Physiol. 17: 371.
  2. Albertson AM, Reicks M, Joshi N, Gugger CK. 2016. Whole grain consumption trends and associations with body weight measures in the United States: results from the cross sectional National Health and Nutrition Examination Survey 2001-2012. Nutr. J. 15: 8.
  3. Borneo R, Leon AE. 2012. Whole grain cereals: functional components and health benefits. Food Funct. 3: 110-119. https://doi.org/10.1039/C1FO10165J
  4. Chung SI, Kim TH, Rico CW, Kang MY. 2014. Effect of instant cooked giant embryonic rice on body fat weight and plasma lipid profile in high fat-fed mice. Nutrients 6: 2266-2278. https://doi.org/10.3390/nu6062266
  5. Cho SS, Qi L, Fahey GC, Klurfeld DM. 2103. Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease. Am. J. Clin. Nutr. 98: 594-619. https://doi.org/10.3945/ajcn.113.067629
  6. Choi JS, Kim H, Jung MH, Hong S, Song J. 2010. Consumption of barley ${\beta}$?glucan ameliorates fatty liver and insulin resistance in mice fed a high?fat diet. Mol. Nutr. Food Res. 54: 1004-1013. https://doi.org/10.1002/mnfr.200900127
  7. Felix AD, Takahashi N, Takahashi M, Katsumata-Tsuboi R, Satoh R, Soon Hui T, Miyajima K, Nakae D, Inoue H, Uehara M. 2017. Extracts of black and brown rice powders improve hepatic lipid accumulation via the activation of $PPAR{\alpha}$ in obese and diabetic model mice. Biosci. Biotechnol. Biochem. 81: 2209-2211. https://doi.org/10.1080/09168451.2017.1372178
  8. Jo M, Heo YR. 2018. Association between sodium excretion and obesity of adults in Gwangju. Korean J. Community Nutr. 23: 38-47. https://doi.org/10.5720/kjcn.2018.23.1.38
  9. Jung CH, Lee DH, Ahn J, Lee H, Choi WH, Jang YJ, Ha TY. 2015. ${\gamma}$-Oryzanol enhances adipocyte differentiation and glucose uptake. Nutrients 7: 4851-4861. https://doi.org/10.3390/nu7064851
  10. Kim TH, Ahn HY, Kim YW, Sim SY, Cho HD, Kim MD, Lee YJ, Cho YS. 2017a. Hepatoprotective effect of Bacillus subtilisfermented silkworm (Bombyx mori L.) extract on non-alcoholic fatty liver in rats. J. Life Sci. 27: 1031-1039.
  11. Kim TN, Choi KM. 2013. Sarcopenic obesity. J. Korean Diabetes 14: 166-173. https://doi.org/10.4093/jkd.2013.14.4.166
  12. Kim HY, Kwak YS, Sung GD, Son WM, Kim DY, Baek YH. 2017b. Effect of 12 weeks combined exercise and nutrition education on body composition, liver function, serum lipids and insulin resistance in obese middle-aged woman. J. Life Sci. 27: 817-825.
  13. Koh-Banerjee P, Franz M, Sampson L, Liu S, Jacobs DR, Spiegelman D, Willett W, Rimm E. 2004. Changes in whole-grain, bran, and cereal fiber consumption in relation to 8-y weight gain among men. Am. J. Clin. Nutr. 80: 1237-1245. https://doi.org/10.1093/ajcn/80.5.1237
  14. Lee MS, Kim D, Jo K, Hwang JK. 2010. Nordihydroguaiaretic acid protects against high-fat diet-induced fatty liver by activating AMP-activated protein kinase in obese mice. Biochem. Biophys. Res. Commun. 401: 92-97. https://doi.org/10.1016/j.bbrc.2010.09.016
  15. Lee S, Kim C, Kwon D, Kim MB, Hwang JK. 2018a. Standardized Kaempferia parviflora Wall. Ex Baker (Zingiberaceae) extract inhibits fat accumulation and muscle atrophy in ob/ob mice. Evid. Based Complement. Alternat. Med. 2018: 8161042.
  16. Lee S, Kim MB, Kim C, Hwang JK. 2018b. Whole grain cereal attenuates obesity-induced muscle atrophy by activating the PI3K/Akt pathway in obese C57BL/6N mice. Food Sci. Biotechnol. 27: 159-168. https://doi.org/10.1007/s10068-017-0277-x
  17. Lee D, Park HY, Kim S, Park Y, Bang MH, Imm JY. 2015. Antiadipogenic effect of oat hull extract containing tricin on 3T3-L1 adipocytes. Process Biochem. 50: 2314-2321. https://doi.org/10.1016/j.procbio.2015.09.019
  18. Marventano S, Vetrani C, Vitale M, Godos J, Riccardi G, Grosso G. 2017. Whole grain intake and glycaemic control in healthy subjects: a systematic review and meta-analysis of randomized controlled trials. Nutrients 9: E769. https://doi.org/10.3390/nu9070769
  19. Naji TA, Amadou I, Zhao RY, Tang X, Shi YH, Le GW. 2014. Effects of phytosterol in feed on growth and related gene expression in muscles of broiler chickens. Trop. J. Pharm. Res. 13: 9-16. https://doi.org/10.4314/tjpr.v13i1.2
  20. Schaffer-Lequart C, Lehmann U, Ross AB, Roger O, Eldridge AL, Ananta E, Bietry MF, King LR, Moroni A, Srichuwong S. 2017. Whole grain in manufactured foods: current use, challenges and the way forward. Crit. Rev. Food Sci. Nut. 57: 1562-1568. https://doi.org/10.1080/10408398.2013.781012
  21. Seo CR, Yi B, Oh S, Kwon SM, Kim S, Song NJ, Cho JY, Park KM, Ahn JY, Hong JW. 2015. Aqueous extracts of hulled barley containing coumaric acid and ferulic acid inhibit adipogenesis in vitro and obesity in vivo. J. Funct. Foods 12: 208-218. https://doi.org/10.1016/j.jff.2014.11.022
  22. Song MY. 2015. Effect of root of Atractylodes macrocephala Koidzumi on myogenesis in C2C12 cells. J. Korean Med. Obes. Res. 15: 38-44. https://doi.org/10.15429/jkomor.2015.15.1.38
  23. Song MY. 2016. Effect of Aconitum carmichaeli Debx on energy metabolism in C2C12 skeletal muscle cells. J. Korean Med. Obes. Res. 16: 109-115. https://doi.org/10.15429/jkomor.2016.16.2.109
  24. Song MY, Jung HW, Park YK. 2016. Antiobesity effect of water extract of Coix lacrymajobi var. mayuen in high fat fed C5BL/6 mice. J. Korean Med. Obes. Res. 16: 27-35. https://doi.org/10.15429/jkomor.2016.16.1.27
  25. Szczesniak K, Ciecierska A, Ostaszewski P, Sadkowski T. 2016. Transcriptomic profile adaptations following exposure of equine satellite cells to nutriactive phytochemical gamma-oryzanol. Genes Nutr. 11: 1-14. https://doi.org/10.1186/s12263-016-0519-4