DOI QR코드

DOI QR Code

Quantitative Approach to the Magnetic Force of a Cylindrical Permanent Magnet Acting on a Ferromagnetic Object

원형 막대자석이 강자성 물체에 작용하는 자기력에 대한 정량적 접근

  • Hyun, Donggeul (Department of Science Education, Teachers' College, Jeju National University) ;
  • Shin, Aekyung (Department of Science Education, Teachers' College, Jeju National University)
  • 현동걸 (제주대학교 교육대학 과학교육과) ;
  • 신애경 (제주대학교 교육대학 과학교육과)
  • Received : 2018.09.11
  • Accepted : 2018.10.29
  • Published : 2018.11.30

Abstract

The quantitative representation for the magnetic force of a cylindrical permanent magnet acting on a ferromagnetic cylindrical object was derived on the basis of magnetization theories, and the Gilbert and Ampere models of magnetism. The magnetic force derived in this study is directly proportional to the remanent magnetization magnetic field, the cross-sectional area of the permanent magnet, the saturation magnetic field, and the cross-sectional area of the ferromagnetic object and is inversely proportional to the square of the quantity related to the distance between the permanent magnet and the ferromagnetic object. The magnetic forces of an AlNiCoV cylindrical permanent magnet and a Ferrite cylindrical permanent magnet, both with a radius of 0.4 cm and a length of 7 cm, acting on ferromagnetic objects at distances farther than the radius were calculated to be less than 3.6711 N and 0.1857 N, respectively.

원형 막대자석이 강자성 원형 막대 물체에 작용하는 자기력에 대한 정량적인 표현이 자기화 이론, 자기에 대한 Gilbert 모형, Ampere 모형을 바탕으로 유도되었다. 이 연구에서 유도된 자기력은 원형 막대자석의 잔류 자기화 자기장과 단면적, 강자성 원형 막대 물체의 포화자기장과 단면적에 비례하며, 그리고 이들 사이의 거리에 관계되는 양의 제곱에 반비례한다. 반지름 0.4 cm이고 길이 7 cm인 알니코V 원형 막대자석과 페라이트 원형 막대자석이 반지름 이상 거리에 있는 강자성 물체에 작용하는 자기력은 각각 3.6711 N과 0.1857 N 이하로 계산되었다.

Keywords

References

  1. J. Kim, Kor. J. Met. Mater. 49, 85 (2011). https://doi.org/10.3365/KJMM.2011.49.1.085
  2. J. Lee, J. Yu, H. Kim and T. Jang, J. Kor. Magn. Soc. 22, 58 (2012). https://doi.org/10.4283/JKMS.2012.22.2.058
  3. S. Namkung, S. Cho and J. Kim, J. Kor. Magn. Soc. 22, 221 (2012). https://doi.org/10.4283/JKMS.2012.22.6.221
  4. J. Hong, J. Kor. Magn. Soc. 22, 188 (2012). https://doi.org/10.4283/JKMS.2012.22.5.188
  5. I. Ahn, Y. Moon, J. Lee, J. Park, J. Lee and K. Woo, J. Contr. Automat. Syst. Eng. 3, 67 (1997).
  6. D. Vokoun, M. Beleggia, L. Heller and P. Sittner, J. Magn. Magn. Mater. 321, 3758 (2009). https://doi.org/10.1016/j.jmmm.2009.07.030
  7. R. Ravaud, G. Lemarquand, S. Babic, V. Lemarquand and C. Akyel, IEEE Trans. Magn. 46, 3585 (2010). https://doi.org/10.1109/TMAG.2010.2049026
  8. D. Hyun and S. Park, School Sci. J. 8, 62 (2014). https://doi.org/10.15737/ssj.8.1.201402.62
  9. S. Park and D. Hyun, New Phys.: Sae Mulli 64, 405 (2014). https://doi.org/10.3938/NPSM.64.405
  10. D. Hyun, A. Shin and S. Park, School Sci. J. 9, 50 (2015).
  11. S. Kim and D. Hyun, New Phys.: Sae Mulli 65, 797 (2015). https://doi.org/10.3938/NPSM.65.797
  12. D. Hyun, S. Kim, A. Shin and S. Park, New Phys.: Sae Mulli 65, 1086 (2015). https://doi.org/10.3938/NPSM.65.1086
  13. B. Choi and Y. Jhun, New Phys.: Sae Mulli 68, 196 (2018). https://doi.org/10.3938/NPSM.68.196
  14. K. Oh and J. Park, J. Res. Curri. Instr. 12, 637 (2008).
  15. D. Hyun and H. Jho, New Phys.: Sae Mulli 67, 975 (2017). https://doi.org/10.3938/NPSM.67.975
  16. Ministry of Education, The 2015 Revised Science Curriculum (Seoul, MOE, 2015), No. 2015-74.
  17. Z. Popovic and B. D. Popovic, Introductory Electromagnetics, corrected ed. (Prentice Hall, Inc., New Jersey, 2000), pp. 278-298.
  18. M. N. O. Sadiku, Elements of Electromagnetics, 3rd ed. (Oxford Univ. Press, London, 2001), pp. 304-366.
  19. J. R. Reitz, F. J. Milford and R. W, Christy, Foundations of Electromagnetic Theory, 3rd ed. (Addison-Wesley Publishing Co., Inc., Massachusetts, 1979), pp. 250-264.
  20. D. J. Griffiths, Introduction to Electrodynamics, 3th ed. (Prentice-Hall, Inc.; Korean language ed., Jinseam Media Publishers Co., Ltd., Seoul, 1999), pp. 264-294.
  21. R. K. Wangsness, Electromagnetic Fields, 2nd ed. (John Wiley and Sons, Inc., 1986; Korean language ed., Chungbum Publishing Co., Ltd, Seoul, 2006), pp. 367-409.
  22. W. H. Hayt, Jr. and J. A. Buck, Engineering Electromagnetics, 8th ed. (McGraw-Hill Education Korea, Ltd., Korean Language ed., Seoul, 2012), pp. 241-288.
  23. Allaboutcircult, https://www.allaboutcircuits.com/textbook/direct-current/chpt-14/permeability-and-saturation (accessed May 12, 2018).
  24. E-magnet, http://www.e-magnet.cn/MATS-2010H_RHG_6.html (accessed Jun. 19, 2018).
  25. Allmagnet, http://www.allmagnet.co.kr (accessed May 16, 2018).
  26. Magnet1000, http://www.magnet1000.co.kr/homepage/goods/technote.php (accessed May 16, 2018).
  27. Hsmagnets, http://www.hsmagnets.com/support/magnetic-properties (accessed May 16, 2018).
  28. Mechapia, http://mechapia.com/dictionary/dictionary_main.php (accessed May 16, 2018).
  29. Cutwire, http://www.cutwire.co.kr/db_steel/490(accessed May 10, 2018).
  30. Itacanet, http://www.itacanet.org/basic-electricalengineering/part-5-magnetic-materials (accessed May 16, 2018).
  31. Patents, https://patents.google.com/patent/US4947524 (accessed May 26, 2018).
  32. D. Halliday, R. Resnick and J. Walker, Fundamentals of Physics, 6th ed. (John Wiley and Sons, Inc.; Korean language ed., Bumhan Publishers Co., Ltd., Seoul, 2009), pp. 447-547.
  33. R. A. Serway and J. W. Jewett, Physics for Scientists and Engineers with Modern Physics, 7th ed. (Cengage Learning Korea Limited and Book's Hill Publishers Co., Ltd., Seoul, 2009), pp. 679-822.
  34. Slideshare, https://www.slideshare.net/AdityaNarayanOjha/4-magnetism (accessed May 22, 2018).
  35. E. P. Furlani, S. Reznik and A. Kroll, IEEE Trans. Magn. 31, 844 (1995). https://doi.org/10.1109/20.364587
  36. S. I. Babic and C. Akyel, IEEE Trans. Magn. 44, 445 (2008). https://doi.org/10.1109/TMAG.2007.915292
  37. En.wikipedia, http://en.wikipedia.org/wiki/Force_between_magnet (accessed April 22, 2018).