과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China, NSAF, China Academy of Engineering Physics
참고문헌
- OECD/IAEA,, Uranium 2011: Resources, Production and Demand, OECD Publishing, 2012.
- C. Gunathilake, J. Gorka, S. Dai, M. Jaroniec, J. Mater. Chem. A 3 (2015) 11650. https://doi.org/10.1039/C5TA02863A
- S. Chatterjee, V.S. Bryantsev, S. Brown, J.C. Johnson, C.D. Grant, R.T. Mayes, B.P. Hay, S. Dai, T. Saito, Ind. Eng. Chem. Res. 55 (2016) 4161. https://doi.org/10.1021/acs.iecr.5b03212
- C.J. Leggett, F. Endrizzi, L. Rao, Ind. Eng. Chem. Res. 55 (2016) 4257. https://doi.org/10.1021/acs.iecr.5b03688
- Y. Yue, C. Zhang, Q. Tang, R.T. Mayes, W.P. Liao, C. Liao, C. Tsouris, J.J. Stankovich, J. Chen, D.K. Hensley, C.W. Abney, D. Jiang, S. Brown, S. Dai, Ind. Eng. Chem. Res. 55 (2016) 4125. https://doi.org/10.1021/acs.iecr.5b03372
- J. Kim, C. Tsouris, Y. Oyola, C.J. Janke, R.T. Mayes, S. Dai, G. Gill, L.J. Kuo, J. Wood, K.Y. Choe, E. Schneider, H. Lindner, Ind. Eng. Chem. Res. 53 (2014) 60763.
- Z. Xing, J. Hu, M. Wang, W. Zhang, S. Li, Q. Gao, G. Wu, Sci. China Chem. 56 (2013) 1504. https://doi.org/10.1007/s11426-013-5002-x
- S. Vukovic, L.A. Watson, S.O. Kang, R. Custelcean, B.P. Hay, Inorg. Chem. 51 (2012) 3855. https://doi.org/10.1021/ic300062s
- S. Xie, X. Liu, B. Zhang, H. Ma, C. Ling, M. Yu, L. Lia, J. Li, J. Mater. Chem. A 3 (2015) 2552. https://doi.org/10.1039/C4TA06120A
- C.W. Abney, S. Das, R.T. Mayes, L.J. Kuo, J. Wood, G. Gill, M. Piechowicz, Z. Lin, W. Lin, S. Dai, Phys. Chem. Chem. Phys. 18 (2016) 23462. https://doi.org/10.1039/C6CP04772F
- S.P. Kelley, P.S. Barber, P.H.K. Mullins, R.D. Rogers, Chem. Commun. 50 (2014) 12504. https://doi.org/10.1039/C4CC06370H
- Y. Wei, J. Qian, L. Huang, D. Hua, RSC Adv. 5 (2015) 64286. https://doi.org/10.1039/C5RA11578G
- J. Kim, Y. Oyola, C. Tsouris, C.R. Hexel, R.T. Mayes, C.J. Janke, S. Dai, Ind. Eng. Chem. Res. 52 (2013) 9433. https://doi.org/10.1021/ie400587f
- S. Das, A.K. Pandey, T. Vasudevan, A.A. Athawale, V.K. Manchanda, Ind. Eng. Chem. Res. 48 (2009) 6789. https://doi.org/10.1021/ie801912n
- T. Vasudevan, A.K. Pandey, S. Das, P.K. Pujari, J. Chem. Eng. 236 (2014) 9. https://doi.org/10.1016/j.cej.2013.09.064
- J. Xiong, S. Hu, Y. Liu, J. Yu, H. Yu, L. Xie, J. Wen, X. Wang, ACS Sustain. Chem. Eng. 5 (2017) 1924. https://doi.org/10.1021/acssuschemeng.6b02663
- T.M. Budnyak, A.V. Strizhak, A. Gladysz-Plaska, D. Sternik, I.V. Komarov, D. Kolodynska, M. Majdanc, V.A. Tertykh, J. Hazard. Mater. 314 (2016) 326. https://doi.org/10.1016/j.jhazmat.2016.04.056
- Z. Zeng, S. Yang, L. Zhang, D. Hua, RSC Adv. 6 (2016) 74110. https://doi.org/10.1039/C6RA16219C
- X. Pan, J. Cao, Y. Wang, W. Huang, D. Hua, X. Zhu, H. Liang, Polymer 53 (2012) 3508. https://doi.org/10.1016/j.polymer.2012.05.058
- D. Hua, J. Tang, J. Jiang, X. Zhu, R. Bai, Macromolecules 42 (2009) 8697. https://doi.org/10.1021/ma9018334
- S. Das, Y. Oyola, R.T. Mayes, C.J. Janke, L.J. Kuo, G. Gill, J.R. Wood, S. Dai, Ind. Eng. Chem. Res. 55 (2016) 4103. https://doi.org/10.1021/acs.iecr.5b03135
- D. Shao, X. Wang, X. Wang, S. Hu, T. Hayat, A. Alsaedi, J. Li, S. Wang, J. Hu, X. Wang, RSC Adv. 6 (2016) 52076. https://doi.org/10.1039/C6RA10817B
- Z. Dong, Y. Qiu, Y. Dai, X. Cao, L. Wang, P. Wang, Z. Lai, W. Zhang, Z. Zhang, Y. Liu, Z. Le, J. Radioanal. Nucl. Chem. 309 (2016) 1217. https://doi.org/10.1007/s10967-016-4722-8
- J. Hu, H. Ma, Z. Xing, X. Liu, L. Xu, R. Li, C. Lin, M. Wang, J. Li, G. Wu, Ind. Eng. Chem. Res. 55 (2016) 4118. https://doi.org/10.1021/acs.iecr.5b03175
- H. Chen, D. Shao, J. Li, X. Wang, J. Chem. Eng. 254 (2014) 623. https://doi.org/10.1016/j.cej.2014.05.091
- J.M. Lagaron, S. Lopez-Quintana, J.C. Rodriguez-Cabello, J.C. Merino, J.M. Pastor, Polymer 41 (2000) 2999. https://doi.org/10.1016/S0032-3861(99)00459-0
- G. Romero, I. Estrela-Lopis, J. Zhou, E. Rojas, A. Franco, C.S. Espinel, A.G. Fernandez, C. Gao, E. Donath, S.E. Moya, Biomacromolecules 11 (2010) 2993. https://doi.org/10.1021/bm1007822
- D. Wu, Y. Shen, A. Ding, M. Qiu, Q. Yang, S. Zheng, Environ. Technol. 34 (2013) 2663. https://doi.org/10.1080/09593330.2013.786103
- F. Chi, X. Wang, J. Xiong, S. Hu, J. Radioanal. Nucl. Chem. 296 (2013) 1331. https://doi.org/10.1007/s10967-012-2303-z
- K.S. Siow, L. Britcher, S. Kumar, H.J. Griesser, Plasma Process. Polym. 11 (2014) 133. https://doi.org/10.1002/ppap.201300115
- W. Li, Q. Liu, J. Liu, H. Zhang, R. Li, Z. Li, X. Jing, J. Wang, Appl. Surf. Sci. 403 (2017) 378. https://doi.org/10.1016/j.apsusc.2017.01.104
- M.J. Tsafack, J. Levalois-Grqtzmacher, Surf. Coat. Technol. 200 (2006) 3503. https://doi.org/10.1016/j.surfcoat.2004.11.030
- M.J. Kim, I.Y. Jeon, J.M. Seo, L. Dai, J.B. Baek, ACS Nano 8 (2014) 2820. https://doi.org/10.1021/nn4066395
- P. Joseph, S. Tretsiakova-McNally, Polym. Degrad. Stab. 97 (2012) 2531. https://doi.org/10.1016/j.polymdegradstab.2012.07.014
- A.M. Puziy, O.I. Poddubnaya, R.P. Socha, J. Gurgul, M. Wisniewski, Carbon 46 (2008) 2113. https://doi.org/10.1016/j.carbon.2008.09.010
- A. Kumar, R.K. Singhal, S. Rout, U. Narayanan, R. Karpe, P.M. Ravi, J. Radioanal. Nucl. Chem. 295 (2013) 649. https://doi.org/10.1007/s10967-012-1825-8
- M. Efstathiou, I. Pashalidis, J. Radioanal. Nucl. Chem. 298 (2013) 1111. https://doi.org/10.1007/s10967-013-2539-2
- F. Endrizzi, L. Rao, J. Chem. Eur. 20 (2014) 14499. https://doi.org/10.1002/chem.201403262
- C.J. Leggett, L. Rao, Polyhedron 95 (2015) 54. https://doi.org/10.1016/j.poly.2015.04.004
- F. Endrizzi, C.J. Leggett, L. Rao, Ind. Eng. Chem. Res. 55 (2016) 4249. https://doi.org/10.1021/acs.iecr.5b03679
- G. Tian, S.J. Teat, L. Rao, Dalton Trans. 42 (2013) 5690. https://doi.org/10.1039/c3dt32940b
- B. Li, L. Wang, Y. Li, D. Wang, R. Wen, X. Guo, S. Li, L. Ma, Y. Tian, RSC Adv. 7 (2017) 8985. https://doi.org/10.1039/C6RA28356J
- D. Shao, G. Hou, J. Li, T. Wen, X. Ren, X. Wang, J. Chem. Eng. 255 (2014) 604. https://doi.org/10.1016/j.cej.2014.06.063
- D. Shao, J. Li, X. Wang, Sci. China Chem. 57 (2014) 1449. https://doi.org/10.1007/s11426-014-5195-7
- D. Shao, X. Ren, J. Wen, S. Hu, J. Xiong, T. Jiang, X. Wang, X. Wang, J. Hazard. Mater. 302 (2016) 1. https://doi.org/10.1016/j.jhazmat.2015.09.043
- P. Yang, Q. Liu, J. Liu, H. Zhang, Z. Li, R. Li, L. Liu, J. Wang, Ind. Eng. Chem. Res. 56 (2017) 3588. https://doi.org/10.1021/acs.iecr.6b04532
- L. Yuan, Y. Liu, W. Shi, Y. Lv, J. Lan, Y. Zhao, Z. Chai, Dalton Trans. 40 (2011) 7446. https://doi.org/10.1039/c1dt10085h
- X. Wang, L. Yuan, Y. Wang, Z. Li, J. Lan, Y. Liu, Y. Feng, Y. Zhao, Z. Chai, W. Shi, Sci. China Chem. 55 (2012) 1705. https://doi.org/10.1007/s11426-012-4625-7
- J.L. Vivero-Escoto, M. Carboni, C.W. Abney, K.E. deKrafft, W. Lin, Microporous Mesoporous Mater. 180 (2013) 22. https://doi.org/10.1016/j.micromeso.2013.05.030
- M. Xu, X. Han, D. Hua, J. Mater. Chem. A 5 (2017) 12278. https://doi.org/10.1039/C7TA02684F
- S. Brown, S. Chatterjee, M. Li, Y. Yue, C. Tsouris, C.J. Janke, T. Saito, S. Dai, Ind. Eng. Chem. Res. 55 (2016) 4130. https://doi.org/10.1021/acs.iecr.5b03667
- W. Dong, S.C. Brooks, Environ. Sci. Technol. 40 (2006) 4689. https://doi.org/10.1021/es0606327
- N. Mehio, B. Williamson, Y. Oyola, R.T. Mayes, C. Janke, S. Brown, S. Dai, Ind. Eng. Chem. Res. 55 (2016) 4217. https://doi.org/10.1021/acs.iecr.5b03211
- S.T. Tsantis, E. Zagoraiou, A. Savvidou, C.P. Raptopoulou, V. Psycharis, L. Szyrwiel, M. Holynska, S.P. Perlepes, Dalton Trans. 45 (2016) 9307. https://doi.org/10.1039/C6DT01293K
- H.B. Pan, L.J. Kuo, C.M. Wai, N. Miyamoto, R. Joshi, J.R. Wood, J.E. Strivens, C.J. Janke, Y. Oyola, S. Das, R.T. Mayes, G.A. Gill, Ind. Eng. Chem. Res. 55 (2016) 4313. https://doi.org/10.1021/acs.iecr.5b03307
- N. Mehio, A.S. Ivanov, A.P. Ladshaw, S. Dai, V.S. Bryantsev, Ind. Eng. Chem. Res. 55 (2016) 4231. https://doi.org/10.1021/acs.iecr.5b03398
- S. Das, A.K. Pandey, A. Athawale, V. Kumar, Y.K. Bhardwaj, S. Sabharwal, V.K. Manchanda, Desalination 232 (2008) 243. https://doi.org/10.1016/j.desal.2007.09.019
피인용 문헌
- Symbiotic Aerogel Fibers Made via In-Situ Gelation of Aramid Nanofibers with Polyamidoxime for Uranium Extraction vol.24, pp.9, 2018, https://doi.org/10.3390/molecules24091821
- Adsorption of uranium(VI) from aqueous solution by novel dibutyl imide chelating resin vol.323, pp.1, 2020, https://doi.org/10.1007/s10967-019-06949-0
- Preparation of three-dimensional fiber-network chitosan films for the efficient treatment of uranium-contaminated effluents vol.81, pp.1, 2020, https://doi.org/10.2166/wst.2020.075
- Fabrication of environmentally sensitive amidoxime hydrogel for extraction of uranium (VI) from an aqueous solution vol.611, pp.None, 2018, https://doi.org/10.1016/j.colsurfa.2020.125813
- Assembly of three-dimensional ultralight poly(amidoxime)/graphene oxide nanoribbons aerogel for efficient removal of uranium(VI) from water samples vol.765, pp.None, 2018, https://doi.org/10.1016/j.scitotenv.2020.142686
- A high-capacity amidoxime-functionalized magnetic composite for selective uranium capture in Salt Lake water vol.9, pp.6, 2018, https://doi.org/10.1016/j.jece.2021.106688
- Adsorption of uranium by chitosan/Chlorella pyrenoidosa composite adsorbent bearing phosphate ligand vol.287, pp.p2, 2018, https://doi.org/10.1016/j.chemosphere.2021.132193