• Title/Summary/Keyword: Poly(amidoxime)

Search Result 2, Processing Time 0.018 seconds

Equlibrium and Kinetics of Metal Extraction by Amidoxime (Amidoxime에 의한 금속 추출 평형 및 추출 속도)

  • Shin, Jeong-Ho;Min, Seong-Kee;Jeong, Kap-Seop;Kim, Joo-Seok
    • Applied Chemistry for Engineering
    • /
    • v.5 no.1
    • /
    • pp.149-159
    • /
    • 1994
  • The kinetics and equilibrium of metal extraction by benzamidoxime and phenylacetamidoxime-chloroform were investigated to apply amidoxime to metal extraction as chelating agent. The overall extraction constant extraction mechanism and selective extraction of copper were examined from the relation among extraction ratio, hydrogen ion concentration and extractant concentration. The experimental rate equation of copper extraction coincided with the theoretical rate equation and was expressed as $R_o=k{\overline{C}}_{HRo}(C_{Mo}/C_{Ho})^{1/2}$. The chemical species extracted was found to the type of ${\overline{CuR_2}}$.

  • PDF

Polyamidoxime functionalized with phosphate groups by plasma technique for effective U(VI) adsorption

  • Shao, Dadong;Wang, Xiaolin;Ren, Xuemei;Hu, Sheng;Wen, Jun;Tan, Zhaoyi;Xiong, Jie;Asiri, Abdullah M.;Marwani, Hadi M.
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.380-387
    • /
    • 2018
  • Finding poly(amidoxime) (PAO) based adsorbent with better performance in U(VI) extraction from seawater is a hot research topic. By employing plasma treatment, the bi-functionalized adsorbents containing amidoxime and phosphate (labelled as $PO_4/PAO$) were successfully synthesized. The obtained $PO_4/PAO$ was characterized and applied for the potential extraction of U(VI) from aqueous solution. The results show that $-PO_4$ enhanced the hydrophilicity of PAO. $PO_4/PAO$ possesses good selective sorption ability for U(VI) and excellent reusability. The findings is helpful to understand optimizing performance of PAO based adsorbents for uranium extraction from seawater.