DOI QR코드

DOI QR Code

Polyamidoxime functionalized with phosphate groups by plasma technique for effective U(VI) adsorption

  • Shao, Dadong (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics) ;
  • Wang, Xiaolin (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics) ;
  • Ren, Xuemei (Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology) ;
  • Hu, Sheng (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics) ;
  • Wen, Jun (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics) ;
  • Tan, Zhaoyi (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics) ;
  • Xiong, Jie (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics) ;
  • Asiri, Abdullah M. (Chemistry Department, Faculty of Science, King Abdulaziz University) ;
  • Marwani, Hadi M. (Chemistry Department, Faculty of Science, King Abdulaziz University)
  • Received : 2017.08.25
  • Accepted : 2018.07.07
  • Published : 2018.11.25

Abstract

Finding poly(amidoxime) (PAO) based adsorbent with better performance in U(VI) extraction from seawater is a hot research topic. By employing plasma treatment, the bi-functionalized adsorbents containing amidoxime and phosphate (labelled as $PO_4/PAO$) were successfully synthesized. The obtained $PO_4/PAO$ was characterized and applied for the potential extraction of U(VI) from aqueous solution. The results show that $-PO_4$ enhanced the hydrophilicity of PAO. $PO_4/PAO$ possesses good selective sorption ability for U(VI) and excellent reusability. The findings is helpful to understand optimizing performance of PAO based adsorbents for uranium extraction from seawater.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, NSAF, China Academy of Engineering Physics

References

  1. OECD/IAEA,, Uranium 2011: Resources, Production and Demand, OECD Publishing, 2012.
  2. C. Gunathilake, J. Gorka, S. Dai, M. Jaroniec, J. Mater. Chem. A 3 (2015) 11650. https://doi.org/10.1039/C5TA02863A
  3. S. Chatterjee, V.S. Bryantsev, S. Brown, J.C. Johnson, C.D. Grant, R.T. Mayes, B.P. Hay, S. Dai, T. Saito, Ind. Eng. Chem. Res. 55 (2016) 4161. https://doi.org/10.1021/acs.iecr.5b03212
  4. C.J. Leggett, F. Endrizzi, L. Rao, Ind. Eng. Chem. Res. 55 (2016) 4257. https://doi.org/10.1021/acs.iecr.5b03688
  5. Y. Yue, C. Zhang, Q. Tang, R.T. Mayes, W.P. Liao, C. Liao, C. Tsouris, J.J. Stankovich, J. Chen, D.K. Hensley, C.W. Abney, D. Jiang, S. Brown, S. Dai, Ind. Eng. Chem. Res. 55 (2016) 4125. https://doi.org/10.1021/acs.iecr.5b03372
  6. J. Kim, C. Tsouris, Y. Oyola, C.J. Janke, R.T. Mayes, S. Dai, G. Gill, L.J. Kuo, J. Wood, K.Y. Choe, E. Schneider, H. Lindner, Ind. Eng. Chem. Res. 53 (2014) 60763.
  7. Z. Xing, J. Hu, M. Wang, W. Zhang, S. Li, Q. Gao, G. Wu, Sci. China Chem. 56 (2013) 1504. https://doi.org/10.1007/s11426-013-5002-x
  8. S. Vukovic, L.A. Watson, S.O. Kang, R. Custelcean, B.P. Hay, Inorg. Chem. 51 (2012) 3855. https://doi.org/10.1021/ic300062s
  9. S. Xie, X. Liu, B. Zhang, H. Ma, C. Ling, M. Yu, L. Lia, J. Li, J. Mater. Chem. A 3 (2015) 2552. https://doi.org/10.1039/C4TA06120A
  10. C.W. Abney, S. Das, R.T. Mayes, L.J. Kuo, J. Wood, G. Gill, M. Piechowicz, Z. Lin, W. Lin, S. Dai, Phys. Chem. Chem. Phys. 18 (2016) 23462. https://doi.org/10.1039/C6CP04772F
  11. S.P. Kelley, P.S. Barber, P.H.K. Mullins, R.D. Rogers, Chem. Commun. 50 (2014) 12504. https://doi.org/10.1039/C4CC06370H
  12. Y. Wei, J. Qian, L. Huang, D. Hua, RSC Adv. 5 (2015) 64286. https://doi.org/10.1039/C5RA11578G
  13. J. Kim, Y. Oyola, C. Tsouris, C.R. Hexel, R.T. Mayes, C.J. Janke, S. Dai, Ind. Eng. Chem. Res. 52 (2013) 9433. https://doi.org/10.1021/ie400587f
  14. S. Das, A.K. Pandey, T. Vasudevan, A.A. Athawale, V.K. Manchanda, Ind. Eng. Chem. Res. 48 (2009) 6789. https://doi.org/10.1021/ie801912n
  15. T. Vasudevan, A.K. Pandey, S. Das, P.K. Pujari, J. Chem. Eng. 236 (2014) 9. https://doi.org/10.1016/j.cej.2013.09.064
  16. J. Xiong, S. Hu, Y. Liu, J. Yu, H. Yu, L. Xie, J. Wen, X. Wang, ACS Sustain. Chem. Eng. 5 (2017) 1924. https://doi.org/10.1021/acssuschemeng.6b02663
  17. T.M. Budnyak, A.V. Strizhak, A. Gladysz-Plaska, D. Sternik, I.V. Komarov, D. Kolodynska,  M. Majdanc, V.A. Tertykh, J. Hazard. Mater. 314 (2016) 326. https://doi.org/10.1016/j.jhazmat.2016.04.056
  18. Z. Zeng, S. Yang, L. Zhang, D. Hua, RSC Adv. 6 (2016) 74110. https://doi.org/10.1039/C6RA16219C
  19. X. Pan, J. Cao, Y. Wang, W. Huang, D. Hua, X. Zhu, H. Liang, Polymer 53 (2012) 3508. https://doi.org/10.1016/j.polymer.2012.05.058
  20. D. Hua, J. Tang, J. Jiang, X. Zhu, R. Bai, Macromolecules 42 (2009) 8697. https://doi.org/10.1021/ma9018334
  21. S. Das, Y. Oyola, R.T. Mayes, C.J. Janke, L.J. Kuo, G. Gill, J.R. Wood, S. Dai, Ind. Eng. Chem. Res. 55 (2016) 4103. https://doi.org/10.1021/acs.iecr.5b03135
  22. D. Shao, X. Wang, X. Wang, S. Hu, T. Hayat, A. Alsaedi, J. Li, S. Wang, J. Hu, X. Wang, RSC Adv. 6 (2016) 52076. https://doi.org/10.1039/C6RA10817B
  23. Z. Dong, Y. Qiu, Y. Dai, X. Cao, L. Wang, P. Wang, Z. Lai, W. Zhang, Z. Zhang, Y. Liu, Z. Le, J. Radioanal. Nucl. Chem. 309 (2016) 1217. https://doi.org/10.1007/s10967-016-4722-8
  24. J. Hu, H. Ma, Z. Xing, X. Liu, L. Xu, R. Li, C. Lin, M. Wang, J. Li, G. Wu, Ind. Eng. Chem. Res. 55 (2016) 4118. https://doi.org/10.1021/acs.iecr.5b03175
  25. H. Chen, D. Shao, J. Li, X. Wang, J. Chem. Eng. 254 (2014) 623. https://doi.org/10.1016/j.cej.2014.05.091
  26. J.M. Lagaron, S. Lopez-Quintana, J.C. Rodriguez-Cabello, J.C. Merino, J.M. Pastor, Polymer 41 (2000) 2999. https://doi.org/10.1016/S0032-3861(99)00459-0
  27. G. Romero, I. Estrela-Lopis, J. Zhou, E. Rojas, A. Franco, C.S. Espinel, A.G. Fernandez, C. Gao, E. Donath, S.E. Moya, Biomacromolecules 11 (2010) 2993. https://doi.org/10.1021/bm1007822
  28. D. Wu, Y. Shen, A. Ding, M. Qiu, Q. Yang, S. Zheng, Environ. Technol. 34 (2013) 2663. https://doi.org/10.1080/09593330.2013.786103
  29. F. Chi, X. Wang, J. Xiong, S. Hu, J. Radioanal. Nucl. Chem. 296 (2013) 1331. https://doi.org/10.1007/s10967-012-2303-z
  30. K.S. Siow, L. Britcher, S. Kumar, H.J. Griesser, Plasma Process. Polym. 11 (2014) 133. https://doi.org/10.1002/ppap.201300115
  31. W. Li, Q. Liu, J. Liu, H. Zhang, R. Li, Z. Li, X. Jing, J. Wang, Appl. Surf. Sci. 403 (2017) 378. https://doi.org/10.1016/j.apsusc.2017.01.104
  32. M.J. Tsafack, J. Levalois-Grqtzmacher, Surf. Coat. Technol. 200 (2006) 3503. https://doi.org/10.1016/j.surfcoat.2004.11.030
  33. M.J. Kim, I.Y. Jeon, J.M. Seo, L. Dai, J.B. Baek, ACS Nano 8 (2014) 2820. https://doi.org/10.1021/nn4066395
  34. P. Joseph, S. Tretsiakova-McNally, Polym. Degrad. Stab. 97 (2012) 2531. https://doi.org/10.1016/j.polymdegradstab.2012.07.014
  35. A.M. Puziy, O.I. Poddubnaya, R.P. Socha, J. Gurgul, M. Wisniewski, Carbon 46 (2008) 2113. https://doi.org/10.1016/j.carbon.2008.09.010
  36. A. Kumar, R.K. Singhal, S. Rout, U. Narayanan, R. Karpe, P.M. Ravi, J. Radioanal. Nucl. Chem. 295 (2013) 649. https://doi.org/10.1007/s10967-012-1825-8
  37. M. Efstathiou, I. Pashalidis, J. Radioanal. Nucl. Chem. 298 (2013) 1111. https://doi.org/10.1007/s10967-013-2539-2
  38. F. Endrizzi, L. Rao, J. Chem. Eur. 20 (2014) 14499. https://doi.org/10.1002/chem.201403262
  39. C.J. Leggett, L. Rao, Polyhedron 95 (2015) 54. https://doi.org/10.1016/j.poly.2015.04.004
  40. F. Endrizzi, C.J. Leggett, L. Rao, Ind. Eng. Chem. Res. 55 (2016) 4249. https://doi.org/10.1021/acs.iecr.5b03679
  41. G. Tian, S.J. Teat, L. Rao, Dalton Trans. 42 (2013) 5690. https://doi.org/10.1039/c3dt32940b
  42. B. Li, L. Wang, Y. Li, D. Wang, R. Wen, X. Guo, S. Li, L. Ma, Y. Tian, RSC Adv. 7 (2017) 8985. https://doi.org/10.1039/C6RA28356J
  43. D. Shao, G. Hou, J. Li, T. Wen, X. Ren, X. Wang, J. Chem. Eng. 255 (2014) 604. https://doi.org/10.1016/j.cej.2014.06.063
  44. D. Shao, J. Li, X. Wang, Sci. China Chem. 57 (2014) 1449. https://doi.org/10.1007/s11426-014-5195-7
  45. D. Shao, X. Ren, J. Wen, S. Hu, J. Xiong, T. Jiang, X. Wang, X. Wang, J. Hazard. Mater. 302 (2016) 1. https://doi.org/10.1016/j.jhazmat.2015.09.043
  46. P. Yang, Q. Liu, J. Liu, H. Zhang, Z. Li, R. Li, L. Liu, J. Wang, Ind. Eng. Chem. Res. 56 (2017) 3588. https://doi.org/10.1021/acs.iecr.6b04532
  47. L. Yuan, Y. Liu, W. Shi, Y. Lv, J. Lan, Y. Zhao, Z. Chai, Dalton Trans. 40 (2011) 7446. https://doi.org/10.1039/c1dt10085h
  48. X. Wang, L. Yuan, Y. Wang, Z. Li, J. Lan, Y. Liu, Y. Feng, Y. Zhao, Z. Chai, W. Shi, Sci. China Chem. 55 (2012) 1705. https://doi.org/10.1007/s11426-012-4625-7
  49. J.L. Vivero-Escoto, M. Carboni, C.W. Abney, K.E. deKrafft, W. Lin, Microporous Mesoporous Mater. 180 (2013) 22. https://doi.org/10.1016/j.micromeso.2013.05.030
  50. M. Xu, X. Han, D. Hua, J. Mater. Chem. A 5 (2017) 12278. https://doi.org/10.1039/C7TA02684F
  51. S. Brown, S. Chatterjee, M. Li, Y. Yue, C. Tsouris, C.J. Janke, T. Saito, S. Dai, Ind. Eng. Chem. Res. 55 (2016) 4130. https://doi.org/10.1021/acs.iecr.5b03667
  52. W. Dong, S.C. Brooks, Environ. Sci. Technol. 40 (2006) 4689. https://doi.org/10.1021/es0606327
  53. N. Mehio, B. Williamson, Y. Oyola, R.T. Mayes, C. Janke, S. Brown, S. Dai, Ind. Eng. Chem. Res. 55 (2016) 4217. https://doi.org/10.1021/acs.iecr.5b03211
  54. S.T. Tsantis, E. Zagoraiou, A. Savvidou, C.P. Raptopoulou, V. Psycharis, L. Szyrwiel, M. Holynska,  S.P. Perlepes, Dalton Trans. 45 (2016) 9307. https://doi.org/10.1039/C6DT01293K
  55. H.B. Pan, L.J. Kuo, C.M. Wai, N. Miyamoto, R. Joshi, J.R. Wood, J.E. Strivens, C.J. Janke, Y. Oyola, S. Das, R.T. Mayes, G.A. Gill, Ind. Eng. Chem. Res. 55 (2016) 4313. https://doi.org/10.1021/acs.iecr.5b03307
  56. N. Mehio, A.S. Ivanov, A.P. Ladshaw, S. Dai, V.S. Bryantsev, Ind. Eng. Chem. Res. 55 (2016) 4231. https://doi.org/10.1021/acs.iecr.5b03398
  57. S. Das, A.K. Pandey, A. Athawale, V. Kumar, Y.K. Bhardwaj, S. Sabharwal, V.K. Manchanda, Desalination 232 (2008) 243. https://doi.org/10.1016/j.desal.2007.09.019

Cited by

  1. Symbiotic Aerogel Fibers Made via In-Situ Gelation of Aramid Nanofibers with Polyamidoxime for Uranium Extraction vol.24, pp.9, 2018, https://doi.org/10.3390/molecules24091821
  2. Adsorption of uranium(VI) from aqueous solution by novel dibutyl imide chelating resin vol.323, pp.1, 2020, https://doi.org/10.1007/s10967-019-06949-0
  3. Preparation of three-dimensional fiber-network chitosan films for the efficient treatment of uranium-contaminated effluents vol.81, pp.1, 2020, https://doi.org/10.2166/wst.2020.075
  4. Fabrication of environmentally sensitive amidoxime hydrogel for extraction of uranium (VI) from an aqueous solution vol.611, pp.None, 2018, https://doi.org/10.1016/j.colsurfa.2020.125813
  5. Assembly of three-dimensional ultralight poly(amidoxime)/graphene oxide nanoribbons aerogel for efficient removal of uranium(VI) from water samples vol.765, pp.None, 2018, https://doi.org/10.1016/j.scitotenv.2020.142686
  6. A high-capacity amidoxime-functionalized magnetic composite for selective uranium capture in Salt Lake water vol.9, pp.6, 2018, https://doi.org/10.1016/j.jece.2021.106688
  7. Adsorption of uranium by chitosan/Chlorella pyrenoidosa composite adsorbent bearing phosphate ligand vol.287, pp.p2, 2018, https://doi.org/10.1016/j.chemosphere.2021.132193