DOI QR코드

DOI QR Code

Formation of a Stationary Light Pulse in a Doppler-Broadened EIT Medium

  • Chough, Y.T. (Department of Automotive Engineering, Gwangju University)
  • Received : 2018.07.11
  • Accepted : 2018.07.31
  • Published : 2018.11.30

Abstract

A number of experiments have been performed on light slowing and stopping in the electromagnetically induced transparency (EIT) media of hot atomic gases where the Doppler-shift may add detunings to the field frequencies in an inhomogeneous fashion. We provide here a theoretical analysis as to the effect of such a Doppler-broadened environment on the dynamics of the system in comparison to a cold atomic medium. We will show that one of the most critical factors in the formation of a stationary light pulse is the enhancement of the excited-state decay rate caused by the collisions between the atoms of the medium and the molecules of the buffer gas.

Keywords

Acknowledgement

Supported by : Gwangju University

References

  1. B. Zhao, Y-A. Chen, X-H. Bao, T. Strassel, C-S. Chuu, X-M. Jin, J. Schmiedmayer, Z-S. Yuan, S. Chen and JW. Pan, Nature Phys. 5, 95 (2008).
  2. R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy and A. Kuzmich, Nature Phys. 5, 100 (2008).
  3. H. P. Specht, C. Nolleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter and G. Rempe, Nature (London) 473, 190 (2012).
  4. K. K. Park, T-M. Zhao, J-C. Lee, Y-T. Chough and Y-H. Kim, Sci. Rept. 6, 34279 (2016). https://doi.org/10.1038/srep34279
  5. Y-T. Chough, J. Phys. Soc. Jpn. 84, 124401 (2015). https://doi.org/10.7566/JPSJ.84.124401
  6. Y-T. Chough, J. Korean Phys. Soc. 69, 488 (2016). https://doi.org/10.3938/jkps.69.488
  7. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry and M. O. Scully, Phys. Rev. Lett. 82, 5229 (1999). https://doi.org/10.1103/PhysRevLett.82.5229
  8. D. Phillips, M. Fleischhauer, A. Mair, R. Walsworth and M. Lukin, Phys. Rev. Lett. 86, 783 (2001). https://doi.org/10.1103/PhysRevLett.86.783
  9. Y. Xiao, M. Klein, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin and R. L. Walsworth, Phys. Rev. Lett. 101, 043601 (2008). https://doi.org/10.1103/PhysRevLett.101.043601
  10. K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford and I. A. Walmsley, Phys. Rev. Lett. 107, 053603 (2011). https://doi.org/10.1103/PhysRevLett.107.053603
  11. M. Bajcsy, A. S. Zibrov and M. D. Lukin, Nature 426, 638 (2003). https://doi.org/10.1038/nature02176
  12. J-H. Wu, M. Artoni and G. C. La Rocca, Phys. Rev. A 82, 013807 (2010). https://doi.org/10.1103/PhysRevA.82.013807
  13. S-W. Su, Y-H. Chen, S-C. Gou, T-L. Horng and I. A. Yu, Phys. Rev. A 83, 013827 (2011). https://doi.org/10.1103/PhysRevA.83.013827
  14. S-W. Su, Y-H. Chen, S-C. Gou and I. A. Yu, J. Phys. B: At. Mol. Opt. Phys. 44, 165504 (2011). https://doi.org/10.1088/0953-4075/44/16/165504
  15. Y-T. Chough, Phys. Rev. A 96, 037801 (2017). https://doi.org/10.1103/PhysRevA.96.037801
  16. T. Peters, S-W. Su, Y-H. Chen, J-S. Wang, S-C. Gou and I. A. Yu, Phys. Rev. A 85, 023838 (2012). https://doi.org/10.1103/PhysRevA.85.023838
  17. Y-W. Lin, W-T. Liao, T. Peters, H-C. Chou, J-S. Wang, H-W. Cho, P-C. Kuan and I. A. Yu, Phys. Rev. Lett. 102, 213601 (2009). https://doi.org/10.1103/PhysRevLett.102.213601
  18. Cf., e.g., M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1977).
  19. D. A. Braje, V. Balic, S. Goda, G. Y. Yin and S. E. Harris, Phys. Rev. Lett. 93, 183601 (2004). https://doi.org/10.1103/PhysRevLett.93.183601
  20. S. Brandt, A. Nagel, R. Wynands and D. Meschede, Phys. Rev. A 46, R1063 (1997).
  21. R. H. Dicke, Phys. Rev. 89, 472 (1953). https://doi.org/10.1103/PhysRev.89.472
  22. M. Erhard and H. Helm, Phys. Rev. A 63, 043813 (2001). https://doi.org/10.1103/PhysRevA.63.043813