DOI QR코드

DOI QR Code

High-Performance Compton SPECT Using Both Photoelectric and Compton Scattering Events

  • Lee, Taewoong (RI Applied Research Team, Korea Institute of Radiologic and Medical Sciences) ;
  • Kim, Younghak (Department of Bio-Convergence Engineering, Korea University) ;
  • Lee, Wonho (School of Health and Environmental Science, Korea University)
  • Received : 2018.05.02
  • Accepted : 2018.06.25
  • Published : 2018.11.15

Abstract

In conventional single-photon emission computed tomography (SPECT), only the photoelectric events in the detectors are used for image reconstruction. However, if the $^{131}I$ isotope, which emits high-energy radiations (364, 637, and 723 keV), is used in nuclear medicine, both photoelectric and Compton scattering events can be used for image reconstruction. The purpose of our work is to perform simulations for Compton SPECT by using the Geant4 application for tomographic emission (GATE). The performance of Compton SPECT is evaluated and compared with that of conventional SPECT. The Compton SPECT unit has an area of $12cm{\times}12cm$ with four gantry heads. Each head is composed of a 2-cm tungsten collimator and a $40{\times}40$ array of CdZnTe (CZT) crystals with a $3{\times}3mm^2$ area and a 6-mm thickness. Compton SPECT can use not only the photoelectric effect but also the Compton scattering effect for image reconstruction. The correct sequential order of the interactions used for image reconstruction is determined using the angular resolution measurement (ARM) method and the energies deposited in each detector. In all the results of simulations using spherical volume sources of various diameters, the reconstructed images of Compton SPECT show higher signal-to-noise ratios (SNRs) without degradation of the image resolution when compared to those of conventional SPECT because the effective count for image reconstruction is higher. For a Derenzo-like phantom, the reconstructed images for different modalities are compared by visual inspection and by using their projected histograms in the X-direction of the reconstructed images.

Keywords

Acknowledgement

Supported by : Korea Foundation of Nuclear Safety (KoFONS), Korea University

References

  1. S-J. Park, W. L. Rogers, S. Huh, H. Kagan, K. Honscheid, D. Burdette, E. Chesi, C. Lacasta, G. Llosa, M. Mikuz, A. Studen, P. Weilhammer and N. H. Clinthorne, Phys. Med. Biol. 52, 2807 (2007). https://doi.org/10.1088/0031-9155/52/10/012
  2. S-J. Park, W. L. Rogers and N. H. Clinthorne, IEEE Trans. Nucl. Sci. 54, 1589 (2007). https://doi.org/10.1109/TNS.2007.906164
  3. C. S. Levin, M. P. Tornai, S. R. Cherry, L. R. MacDonald and E. J. Hoffman, IEEE Trans. Nucl. Sci. 44, 218 (1997). https://doi.org/10.1109/23.568809
  4. G. Pratx and C. S. Levin, Phys. Med. Biol. 54, 5073 (2009). https://doi.org/10.1088/0031-9155/54/17/001
  5. C. Yoon, W. Lee and T. Lee, Nucl. Instrum. Meth. A 652, 713 (2011). https://doi.org/10.1016/j.nima.2011.01.141
  6. K. F. Koral, X. Wang, W. L. Rogers, N. H. Clinthorne and X. Wang, J. Nucl. Med. 29, 195 (1988).
  7. G. F. Knoll, Radiation Detection and Measurement (Wiley, New York, 2010), 4th edition, Chap. 2, p. 48.
  8. A. E. Bolotnikov, G. S. Camarda, G. A. Carini, G. W. Wright, D. S. McGregor, W. McNeil and R. B. James, Proc. SPIE 5540, 33 (2004).
  9. A. E. Bolotnikov, G. S. Camarda, G. Carini, Y. Cui, K. T. Kohman, L. Li, M. B. Salomon and R. B. James, Proc. IEEE Trans. Nucl. Sci. R05-2, 3622 (2006).
  10. M. J. Macey, E. J. Grant, J. E. Bayouth, H. B. Giap, S. J. Danna, R. Sirisriro and D. A. Podoloff, Med. Phys. 22, 1637 (1995). https://doi.org/10.1118/1.597423
  11. C. Beijst, M. Elschot, M. A. Viergever and H. Jong, J. Nucl. Med. 56, 476 (2015). https://doi.org/10.2967/jnumed.114.149658
  12. F. Boisson, D. Zahra, A. Parmar, M-C Gregoire, S. R Meikle, H. Hamse and A. Reilhac, J. Nucl. Med. 54, 1833 (2013). https://doi.org/10.2967/jnumed.112.117572
  13. Y. F. Du, Z. He, G. F. Knoll, D. K. Wehe and W. Li, Nucl. Instrum. Meth. A 457, 203 (2001). https://doi.org/10.1016/S0168-9002(00)00669-0
  14. S. Watanabe, T. Tanaka, K. Nakazawa, T. Mitani, K. Oonuki, T. Takahashi, T. Takashima, H. Tajima, Y. Fukazawa, M. Nomachi, S. Kubo, M. Onishi and Y. Kuroda, IEEE Trans. Nucl. Sci. 52, 2045 (2005). https://doi.org/10.1109/TNS.2005.856995
  15. E. Michel-Gonzalez, M. H. Cho and S. Y. Lee, BioMed. Eng. Online 10, 1 (2011). https://doi.org/10.1186/1475-925X-10-1
  16. R. Barquero, H. P. Garcia, M. G. Incio, P. Minquez, A. Cardenas, D. Martinez and M. Lassmann, Phys. Med. Biol. 62, 909 (2017). https://doi.org/10.1088/1361-6560/62/3/909