DOI QR코드

DOI QR Code

Reduction of histamine and heavy metals in mackerel hydrolyzates produced by catalysts associated-subcritical water hydrolysis

  • Asaduzzaman, A.K.M. (Department of Food Science and Technology, Pukyong National University) ;
  • Haq, Monjurul (Department of Food Science and Technology, Pukyong National University) ;
  • Chun, Byung-Soo (Department of Food Science and Technology, Pukyong National University)
  • Received : 2018.05.28
  • Accepted : 2018.08.04
  • Published : 2018.12.25

Abstract

Various catalysts such as formic acid, acetic acid, sodium hydroxide, sodium bicarbonate, carbon dioxide and nitrogen gas were used for hydrolyzates production from deoiled mackerel muscle by subcritical water hydrolysis. Above 99% hydrolysis yield was obtained using sodium bicarbonate catalyst at $260^{\circ}C/70bar$. Histamine and heavy metals concentration were reduced in hydrolyzates. Highest amount of amino acid (400.36 mg/g) and reducing sugar (24.75 mg/g) were found in hydrolyzate obtained at $260^{\circ}C/70bar$ and $220^{\circ}C/30bar$, respectively with sodium bicarbonate catalyst. Antioxidant and ACE-inhibitory activities were significantly higher in hydrolyzates obtained using sodium bicarbonate than that of others.

Keywords

Acknowledgement

Supported by : Korea Small and Medium Business Administration

References

  1. Y. Zhao, H.T. Wang, W.J. Lu, H. Wang, Chem. Eng. J. 166 (2011) 868. https://doi.org/10.1016/j.cej.2010.11.058
  2. P. Khuwijitjaru, K. Watsanit, S. Adachi, J. Ind. Eng. Chem. 18 (2012) 225. https://doi.org/10.1016/j.jiec.2011.11.010
  3. B. Tangkhavanich, T. Kobayashi, S. Adachi, J. Ind. Eng. Chem. 20 (2014) 2610. https://doi.org/10.1016/j.jiec.2013.10.048
  4. H. Yoshida, O. Tavakoli, J. Chem. Eng. Jpn. 37 (2004) 253. https://doi.org/10.1252/jcej.37.253
  5. A.K.M. Asaduzzaman, B.S. Chun, J. Food Sci. Technol. 52 (2013) 793.
  6. J. Zhao, G.R. Huang, M.N. Zhang, W.W. Chen, J.X. Jiang, Am. J. Food Technol. 6 (2011) 904. https://doi.org/10.3923/ajft.2011.904.913
  7. C. Barbana, J.I. Boye, Food Chem. 127 (2011) 94. https://doi.org/10.1016/j.foodchem.2010.12.093
  8. S.F. Wu, W. Chen, Acta Paediatr. Taiwan. 44 (2003) 297.
  9. S.L. Taylor, Crit. Rev. Toxicol. 17 (1986) 91. https://doi.org/10.3109/10408448609023767
  10. F. Yilmaz, N. Ozdemir, A. Demirak, A. Tuna, Food Chem. 100 (2007) 830. https://doi.org/10.1016/j.foodchem.2005.09.020
  11. M.M. Al-Dabbas, T. Suganuma, K. Kitahara, D.X. Hou, M. Fujii, J. Ethnopharmacol. 108 (2006) 287. https://doi.org/10.1016/j.jep.2006.05.006
  12. N.J. Brown, D.E. Vaughan, Circulation 97 (1998) 1411. https://doi.org/10.1161/01.CIR.97.14.1411
  13. S.M. Shalaby, M. Zakora, J. Otte, J. Dairy Res. 73 (2006) 178. https://doi.org/10.1017/S0022029905001639
  14. A.R. Katritzky, S.M. Allin, M. Siskin, Acc. Chem. Res. 29 (1996) 399. https://doi.org/10.1021/ar950144w
  15. K. Kang, B.S. Chun, Korean J. Chem. Eng. 21 (2004) 654. https://doi.org/10.1007/BF02705501
  16. A.D. Espinoza, R.O. Morawicki, J. Agric. Food Chem. 60 (2012) 5250. https://doi.org/10.1021/jf300581r
  17. H. Cheng, X. Zhu, C. Zhu, J. Qian, N. Zhu, L. Zhao, J. Chen, Bioresour. Technol. 99 (2008) 3337. https://doi.org/10.1016/j.biortech.2007.08.024
  18. Z. Xian, H. Cheng, Z. Ning, Chin. J. Chem. Eng. 16 (2008) 456. https://doi.org/10.1016/S1004-9541(08)60105-6
  19. A.K.M. Asaduzzaman, B.S. Chun, J. Ind. Eng. Chem. 21 (2015) 620. https://doi.org/10.1016/j.jiec.2014.03.029
  20. AOAC, Official Methods of Analysis, 15th ed., Association of Official Analytical Chemists, Washington, DC, USA, 1990.
  21. S.B. Patange, M.K. Mukundan, K.A. Kumar, Food Control 16 (2005) 465. https://doi.org/10.1016/j.foodcont.2004.05.008
  22. M.A. Ackacha, K.M. Khalifa, A.M. Hamil, A.Q.A. Al-Houni, Int. J. ChemTech Res. 2 (2010) 1350.
  23. S. Blackburn, Sample Preparation and Hydrolytic Methods: Amino Acid Determina-tion Methods and Techniques, Marcel Dekker Inc., New York, 1978, pp. 17.
  24. G.L. Miller, Z. Anal. Chem. 31 (1959) 426. https://doi.org/10.1021/ac60147a030
  25. G.C. Yen, H.Y. Chen, J. Agric. Food Chem. 43 (1995) 27. https://doi.org/10.1021/jf00049a007
  26. D. Zheleva-Dimitrova, P. Nedialkov, G. Kitanov, J. Pharmacogn. Mag. 6 (2010) 74. https://doi.org/10.4103/0973-1296.62889
  27. B.W. Chang, R.L.C. Chen, I.J. Huang, H.C. Chang, Anal Biochem. 291 (2001) 84. https://doi.org/10.1006/abio.2001.5005
  28. M. Herrero, A. del Pilar Sanchez-Camargo, A. Cifuentes, E. Ibanez, TrAC Trends Anal. Chem. 71 (2015) 26. https://doi.org/10.1016/j.trac.2015.01.018
  29. H.J. Lee, P.S. Saravana, Y.N. Cho, M. Haq, B.S. Chun, J. Supercrit. Fluids (2018), doi:http://dx.doi.org/10.1016/j.supflu.2018.01.008.
  30. H.J. Lee, S.J. Chae, P.S. Saravana, B.S. Chun, Fish. Aquat. Sci. 20 (2017) 1. https://doi.org/10.1186/s41240-017-0046-z
  31. Z. Xian, H. Cheng, Z. Ning, Chin. J. Chem. Eng. 16 (2008) 456. https://doi.org/10.1016/S1004-9541(08)60105-6
  32. FDA, Fish and Fisheries Products Hazards and Control Guide, 2nd ed., Office of Seafood, Food and Drug Administration, USA, 1998 p. 73.
  33. B.Y. Chung, S.Y. Park, Y.S. Byun, J.H. Son, Y.W. Choi, Y.S. Cho, H.O. Kim, C.W. Park, Ann. Dermatol. 29 (2017) 706. https://doi.org/10.5021/ad.2017.29.6.706
  34. Y. Sekiguchi, H. Makita, A. Yamamura, K. Matsumoto, J. Biosci. Bioeng. 97 (2004) 104. https://doi.org/10.1016/S1389-1723(04)70176-0
  35. A. Naila, S. Flint, G. Fletcher, P. Bremer, G. Meerdink, J. Food Sci. 75 (2010) 139. https://doi.org/10.1111/j.1750-3841.2010.01774.x
  36. M. Martuscelli, M.A. Crudele, F. Gardini, G. Suzzi, Lett. Appl. Microbiol. 31 (2000) 228. https://doi.org/10.1046/j.1365-2672.2000.00796.x
  37. A.K.M. Asaduzzaman, W.K. Lee, B.S. Chun, Fish. Aquat. Sci. 17 (2014) 59.
  38. FAO/WHO, Evaluation of Certain Food Additives and the Contaminants Mercury, Cadmium and Lead. WHO Technical Report Series No. 505, Food and Agriculture/World Health Organization, Geneva, 1972.
  39. Australia New Zealand Food Authority, Food, Standards Code Part 1.4-Contaminants and residues, (2002) .
  40. M.N. Islam, H.Y. Jung, J.H. Park, J. Environ. Manage. 163 (2015) 262. https://doi.org/10.1016/j.jenvman.2015.08.007
  41. A. Akter, M. Goto, M.J.M.M. Noor, A.K.M.M. Islam, U. Motoo, Z.Z. Ya, A. Parvez, Chem. Eng. Trans. 56 (2017) 265.
  42. W. Shi, C. Liu, D. Ding, Z. Lei, Y. Yang, C. Feng, Z. Zhang, Bioresour. Technol. 137 (2013) 18. https://doi.org/10.1016/j.biortech.2013.03.106
  43. T. Rogalinski, S. Herrmann, G. Brunner, J. Supercrit. Fluids 36 (2005) 49. https://doi.org/10.1016/j.supflu.2005.03.001
  44. R.M. Vidotti, E.M.M. Viegas, D.J. Carneiro, Anim. Feed Sci. Technol.105 (2003) 199. https://doi.org/10.1016/S0377-8401(03)00056-7
  45. FAO/WHO, Protein Quality Evaluation: Report of the Joint FAO/WHO Expert Consultation, Bethesda, MD, USA (4-8 December 1989), Food and Agricultural Organization of the United Nations, Rome, Italy, 1990.
  46. R.H. Kim, A.K.M. Asaduzzaman, C.H. You, B.S. Chun, Fish. Aquat. Sci. 16 (2013) 71.
  47. A.T. Getachew, B.S. Chun, J. Clean. Prod. 142 (2017) 3719. https://doi.org/10.1016/j.jclepro.2016.10.096
  48. S.H. Khajavi, Y. Kimura, T. Oomori, R. Matsuno, S. Adachi, J. Food Eng. 68 (2008) 309.
  49. B.M. Kabyemela, T. Adschiri, R.M. Malaluan, K. Arai, Ind. Eng. Chem. Res. 36 (1997) 1552. https://doi.org/10.1021/ie960250h
  50. A.T.Quitain,M.Faisal, K.Kang, H.Daimon, K.Fujie, J.Hazard.Mater. 93(2002)209. https://doi.org/10.1016/S0304-3894(02)00024-9
  51. V. Klompong, S. Benjakul, D. Kantachote, F. Shahidi, Food Chem.102 (2007) 1317. https://doi.org/10.1016/j.foodchem.2006.07.016
  52. R.L. Prior, X. Wu, K. Schaich, J. Agric. Food Chem. 53 (2005) 4290. https://doi.org/10.1021/jf0502698
  53. H.C. Wu, H.M. Chen, C.Y. Shiau, J. Food Res. Int. 36 (2003) 949. https://doi.org/10.1016/S0963-9969(03)00104-2
  54. S.Y. Dong, M.Y. Zeng, D.F. Wang, Z.Y. Liu, Y.H. Zhao, H.C. Yang, Food Chem. 107 (2008) 1485. https://doi.org/10.1016/j.foodchem.2007.10.011
  55. M. Toshiro, M. Hiroshi, S. Eiji, O. Katsuhiro, N. Masatoshi, O. Yutaka, Biosci. Biotechnol. Biochem. 57 (1993) 922. https://doi.org/10.1271/bbb.57.922
  56. K. Magdalena, F. Ewa, P.K. Janitha, P.D. Wanasundara, A. Ryszard, Pol. J. Food Nutr. Sci. 14 (2005) 133.
  57. G.H. Li, G.W. Le, Y.H. Shi, S. Shrestha, Nutr. Res. 24 (2004) 469. https://doi.org/10.1016/S0271-5317(04)00058-2

Cited by

  1. Quality Evaluation and Characterization of Specific Spoilage Organisms of Spanish Mackerel by High-Throughput Sequencing during 0 °C Cold Chain Logistics vol.9, pp.3, 2020, https://doi.org/10.3390/foods9030312
  2. Nutritional characterization of freshwater mud eel ( Monopterus cuchia ) muscle cooked by different thermal processes vol.8, pp.11, 2018, https://doi.org/10.1002/fsn3.1920
  3. Protein Hydrolysis by Subcritical Water: A New Perspective on Obtaining Bioactive Peptides vol.26, pp.21, 2018, https://doi.org/10.3390/molecules26216655