DOI QR코드

DOI QR Code

New insights about coke deposition in methanol-to-DME reaction over MOR-, MFI- and FER-type zeolites

  • Migliori, Massimo (University of Calabria, Department of Environmental and Chemical Engineering) ;
  • Catizzone, Enrico (University of Calabria, Department of Environmental and Chemical Engineering) ;
  • Aloise, Alfredo (University of Calabria, Department of Environmental and Chemical Engineering) ;
  • Bonura, Giuseppe (CNR-ITAE, Istituto di Tecnologie Avanzate per l'Energia "Nicola Giordano") ;
  • Gomez-Hortiguela, Luis (Instituto de Catalisis y Petroleoquimica, ICP-CSIC) ;
  • Frusteri, Leone (University of Messina, Dip. Ingegneria Elettronica, Chimica ed Ingegneria Industriale INSTM/CASPE, Laboratory of Catalysis for Sustainable Production and Energy) ;
  • Cannilla, Catia (CNR-ITAE, Istituto di Tecnologie Avanzate per l'Energia "Nicola Giordano") ;
  • Frusteri, Francesco (CNR-ITAE, Istituto di Tecnologie Avanzate per l'Energia "Nicola Giordano") ;
  • Giordano, Girolamo (University of Calabria, Department of Environmental and Chemical Engineering)
  • Received : 2018.04.12
  • Accepted : 2018.07.29
  • Published : 2018.12.25

Abstract

The effect of channel-system of zeolite on methanol-to-DME reaction was studied. Results revealed that channels size and topology affect catalyst lifetime, type and location of coke precursors. FER and MFI showed the best resistance towards coke deposition, whilst fast deactivation was observed on MOR. Although the higher concentration and strength of acid sites, FER structure formed a lower coke amount, preferably located within the pores, while coke cluster deposited on the external surface of MOR. Analysis of acid sites distribution and strength was performed during deactivation-regeneration process. Coke location assessment was also supported by molecular simulations.

Keywords

Acknowledgement

Supported by : Ministry of Economy and Competitiveness

References

  1. G.A. Olah, Angew. Chem. Int. Ed. 44 (2005) 23636.
  2. G. Centi, S. Perathoner, ChemSusChem 3 (2010) 1274.
  3. A. Molino, M. Migliori, F. Nanna, Fuel 115 (2014) 41. https://doi.org/10.1016/j.fuel.2013.07.005
  4. S. Kar, J. Kothandaram, A. Goeppert, G.K.S. Prakash, J. $CO_2$ Util. 23 (2018) 212. https://doi.org/10.1016/j.jcou.2017.10.023
  5. G. Bonura, M. Migliori, L. Frusteri, C. Cannilla, E. Catizzone, G. Giordano, F. Frusteri, J. $CO_2$ Util. 24 (2018) 398. https://doi.org/10.1016/j.jcou.2018.01.028
  6. C. Arcoumanis, C. Bae, R. Crookes, E. Kinoshita, Fuel 87 (2008) 1014. https://doi.org/10.1016/j.fuel.2007.06.007
  7. E. Catizzone, G. Bonura, M. Migliori, F. Frusteri, G. Giordano, Molecules 23 (2018) 31.
  8. Z. Azizi, M. Rezaeimanesh, T. Tohidian, M.R. Rahimpour, Chem. Eng. Process. Process Intensif. 82 (2014) 150. https://doi.org/10.1016/j.cep.2014.06.007
  9. F.J. Keil, Microporous Mesoporous Mater. 26 (1999) 49.
  10. M. Stocker, Microporous Mesoporous Mater. 29 (1999) 3. https://doi.org/10.1016/S1387-1811(98)00319-9
  11. E. Catizzone, Z. Cirelli, A. Aloise, P. Lanzafame, M. Migliori, G. Giordano, Catal. Today 304 (2018) 39. https://doi.org/10.1016/j.cattod.2017.08.037
  12. M. Sanchez-Contador, A. Ateka, A.T. Aguayo, J. Bilbao, J. Ind. Eng. Chem. 63 (2018) 245. https://doi.org/10.1016/j.jiec.2018.02.022
  13. J.S. Martinez-Espin, M. Morten, T.V.W. Janssens, S. Svelle, P. Beato, U. Olsbye, Catal. Sci. Technol. 7 (2017) 2700. https://doi.org/10.1039/C7CY00129K
  14. P. Tian, Y. Wei, Z. Liu, ACS Catal. 5 (2015) 1922. https://doi.org/10.1021/acscatal.5b00007
  15. J.Q. Chen, A. Bozzano, B. Glover, T. Fuglerud, S. Kvisle, Catal. Today 106 (2005) 103. https://doi.org/10.1016/j.cattod.2005.07.178
  16. D. Chen, K. Moljord, A. Holmen, Microporous Mesoporous Mater. 164 (2012) 239. https://doi.org/10.1016/j.micromeso.2012.06.046
  17. N. Hadi, R. Alizadeh, A. Niaei, J. Ind. Eng. Chem. 54 (2017) 82. https://doi.org/10.1016/j.jiec.2017.05.021
  18. Y. Fan, Y. Cai, X. Li, H. Yin, J. Xia, J. Ind. Eng. Chem. 46 (2017) 139. https://doi.org/10.1016/j.jiec.2016.10.024
  19. M. Guisnet, P. Magnoux, Appl. Catal. 54 (1989) 1. https://doi.org/10.1016/S0166-9834(00)82350-7
  20. M. Guisnet, P. Magnoux, Catal. Today 36 (1997) 477. https://doi.org/10.1016/S0920-5861(96)00238-6
  21. U. Olsbye, S. Svelle, K.P. Lillerud, Z.H. Wei, Y.Y. Chen, J.F. Li, J.G. Wang, W.B. Fan, Chem. Soc. Rev. 44 (2015) 7155. https://doi.org/10.1039/C5CS00304K
  22. M. Guisnet, P. Magnoux, Appl. Catal. A: Gen. 212 (2001) 83. https://doi.org/10.1016/S0926-860X(00)00845-0
  23. K. Hemelsoet, J. Van der Mynsbrugge, K. De Wispelaere, M. Waroquier, V. Van Speybroeck, ChemPhysChem 14 (2013) 1526. https://doi.org/10.1002/cphc.201201023
  24. B. Arstad, J.B. Nicholas, J.F. Haw, J. Am. Chem. Soc. 126 (2004) 2991. https://doi.org/10.1021/ja035923j
  25. V. Van Speybroeck, K. Hemelsoet, K. De Wispelaere, Q. Qian, J. Van der Mynsbrugge, B. De Sterck, B.M. Weckhuysen, M. Waroquier, ChemCatChem 5 (2013) 173. https://doi.org/10.1002/cctc.201200580
  26. U. Olsbye, S. Svelle, M. Bjorgen, P. Beato, T.V.W. Janssens, F. Joensen, S. Bordiga, K.P. Lillerud, Angew. Chem. 51 (2012) 5810. https://doi.org/10.1002/anie.201103657
  27. A.T. Aguayo, A.G. Gayubo, R. Vivanco, M. Olazar, J. Bilbao, Appl. Catal. A: Gen. 283 (2005) 197. https://doi.org/10.1016/j.apcata.2005.01.006
  28. E. Catizzone, A. Aloise, M. Migliori, G. Giordano, J. Energy Chem. 26 (2017) 406. https://doi.org/10.1016/j.jechem.2016.12.005
  29. J. Kim, M. Choi, R. Ryoo, J. Catal. 269 (2010) 219. https://doi.org/10.1016/j.jcat.2009.11.009
  30. X. Chen, D. Xi, Q. Sun, N. Wang, Z. Dai, D. Fan, V. Veltchev, J. Yu, Microporous Mesoporous Mater. 234 (2016) 401. https://doi.org/10.1016/j.micromeso.2016.07.045
  31. D. Mores, J. Kornatyowski, U. Olsbye, B.M. Weckhuysen, Chem. Eur. J. 17 (2011) 2874. https://doi.org/10.1002/chem.201002624
  32. S. Muller, Y. Liu, M. Vishnuvarthan, X. Sun, A.C. van Veen, G.L. Haller, M. Sanchez-Sanchez, J.A. Lercher, J. Catal 325 (2015) 48. https://doi.org/10.1016/j.jcat.2015.02.013
  33. J. Li, Y. Wei, G. Liu, Y. Qi, P. Tian, B. Li, Y. He, Z. Liu, Catal. Today 171 (2011) 221. https://doi.org/10.1016/j.cattod.2011.02.027
  34. E. Catizzone, A. Aloise, M. Migliori, G. Giordano, Microporous Mesoporous Mater. 243 (2017) 102. https://doi.org/10.1016/j.micromeso.2017.02.022
  35. G. Giordano, A. Katovic, D. Caputo, Stud. Surf. Sci. Catal. 140 (2001) 307.
  36. P.A. Jacobs, J.A. Martens, Stud. Surf. Sci. Catal. 33 (1987) 217.
  37. E. Catizzone, A. Aloise, M. Migliori, G. Giordano, Appl. Catal. A 502 (2015) 215. https://doi.org/10.1016/j.apcata.2015.06.017
  38. B. Wichterlova, Z. Tvarukova, Z. Sobalik, P. Sarv, Microporous Mesoporous Mater. 24 (1998) 223. https://doi.org/10.1016/S1387-1811(98)00167-X
  39. M. Migliori, A. Aloise, E. Catizzone, G. Giordano, Ind. Eng. Chem. Res. 53 (2014) 14885. https://doi.org/10.1021/ie502775u
  40. P. Dauber-Osguthorpe, V.A. Roberts, D.J. Osguthorpe, J. Wolff, M. Genest, A.T. Hagler, Proteins 4 (1988) 31. https://doi.org/10.1002/prot.340040106
  41. G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Catal. Today 41 (1998) 207. https://doi.org/10.1016/S0920-5861(98)00050-9
  42. E. Choi, I. Nam, Y.G. Kim, J. Catal 161 (1996) 597. https://doi.org/10.1006/jcat.1996.0222
  43. B. Hunger, M. Heuchel, L.A. Clark, R.Q. Snurr, J. Phys. Chem. B 106 (2002) 3882. https://doi.org/10.1021/jp012688n
  44. A.G. Gayubo, P.L. Benito, A.T. Aguayo, M. Olazar, J. Bilbao, J. Chem. Techol. Biotechnol. 65 (1996) 186. https://doi.org/10.1002/(SICI)1097-4660(199602)65:2<186::AID-JCTB401>3.0.CO;2-J
  45. E. Catizzone, M. Migliori, A. Purita, G. Giordano, J. Energy Chem. (2018), doi: http://dx.doi.org/10.1016/j.jechem.2018.05.004.
  46. L. Qi, J. Li, Y. Wei, Y. He, L. Xu, Z. Liu, RSC Adv. 6 (2016) 52284. https://doi.org/10.1039/C6RA08393E
  47. J.T. Miller, P.D. Hopkins, B.L. Meyers, G.J. Ray, R.T. Roginski, G.W. Zajak, N.H. Rosembaum, J. Catal. 138 (1992) 115. https://doi.org/10.1016/0021-9517(92)90011-6
  48. F. Bleken, M. Bjorgen, L. Palumbo, S. Bordiga, S. Svelle, K.-P. Lillerud, U. Olsbye, Top. Catal. 52 (2009) 218. https://doi.org/10.1007/s11244-008-9158-0
  49. C.H. Bartholomew, Appl. Catal. A 212 (2001) 17. https://doi.org/10.1016/S0926-860X(00)00843-7
  50. Z. Liu, X. Dong, Y. Zhu, A.H. Emwas, D. Zhang, Q. Tian, Y. Han, ACS Catal. 5 (2015) 5837. https://doi.org/10.1021/acscatal.5b01350
  51. J.F. Haw, W. Song, D.M. Marcus, J.B. Nicholas, Acc. Chem. Res. 36 (2003) 317. https://doi.org/10.1021/ar020006o
  52. M. Bjorgen, S. Svelle, F. Joensen, J. Nerlova, S. Kolboe, F. Bonino, L. Palumbo, S. Bordiga, U. Olsbye, J. Catal. 209 (2007) 195.
  53. B.F. Mentzen, Mater. Res. Bull. 30 (1995) 1193. https://doi.org/10.1016/0025-5408(95)00132-8
  54. B.F. Mentzen, F. Lefebvre, Mater. Res. Bull 30 (1995) 613. https://doi.org/10.1016/0025-5408(95)00042-9
  55. P. Andy, D. Martin, M. Guisnet, R.G. Bell, C.R.A. Catlow, J. Phys. Chem. B 104 (2000) 4827. https://doi.org/10.1021/jp994169e
  56. M. Zokaie, D.S. Wragg, A. Gronvold, T. Fuglerud, J.H. Cavka, K.P. Lillerud, O. Swang, Microporous Mesoporous Mater. 165 (2013) 1. https://doi.org/10.1016/j.micromeso.2012.07.054
  57. B.T.W. Lo, L. Ye, J. Qu, J. Sun, J. Zheng, D. Kong, C.A. Murray, C.C. Tang, S.C. Edman Tsang, Angew. Chem. Int. Ed. 55 (2016) 5981. https://doi.org/10.1002/anie.201600487
  58. D. Rojo-Gama, M. Nielsen, D.S. Wragg, M. Dyballa, J. Holzinger, H. Falsig, L.F. Lundegaard, P. Beato, R.Y. Brogaard, K.P. Lillerud, U. Olsbye, S. Svelle, ACS Catal. 7 (2017) 8235. https://doi.org/10.1021/acscatal.7b02193
  59. H.-G. Jang, H.-K. Min, J.K. Lee, S.B. Hong, G. Seo, Appl. Catal. A 437 (2012) 120.
  60. D. Rojo-Gama, L. Mentel, G.N. Kalantzopoulos, D.K. Pappas, I. Dovgaliuk, U. Olsbye, K.P. Lillerud, P. Beato, L.F. Lundegaard, D.S. Wragg, S. Svelle, J. Phys. Chem. Lett. 9 (2018) 1324. https://doi.org/10.1021/acs.jpclett.8b00094
  61. D.S. Wragg, F.L. Bleken, M.G. O'Brien, H. Di Michiel, U. Olsbye, PhysChem-ChemPhys 9 (2018) 1324.
  62. B.F. Mentzen, P. Gelin, Mater. Res. Bull. 33 (1997) 109.
  63. H. van Koningsveld, J.C. Jansen, Microporous Mater. 6 (1996) 156.
  64. D.S. Wragg, R.E. Johnsen, M. Balasundaram, P. Norby, H. Fjellvag, A. Gronvold, T. Fuglerud, J. Hafizovic, O.B. Vistad, D. Akporiaye, J. Catal. 268 (2009) 290. https://doi.org/10.1016/j.jcat.2009.09.027

Cited by

  1. In Situ FT-IR Characterization of CuZnZr/Ferrierite Hybrid Catalysts for One-Pot CO 2 -to-DME Conversion vol.11, pp.11, 2018, https://doi.org/10.3390/ma11112275
  2. Deoxygenation of Stearic Acid over Cobalt-Based NaX Zeolite Catalysts vol.9, pp.1, 2018, https://doi.org/10.3390/catal9010042
  3. Hierarchical Low Si/Al Ratio Ferrierite Zeolite by Sequential Postsynthesis Treatment: Catalytic Assessment in Dehydration Reaction of Methanol vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/3084356
  4. Catalytic Performance of Layered Double Hydroxides (LDHs) Derived Materials in Gas‐Solid and Liquid‐Solid Phase Reactions vol.11, pp.14, 2019, https://doi.org/10.1002/cctc.201900499
  5. Distinguishing external and internal coke depositions on micron-sized HZSM-5 via catalyst-assisted temperature-programmed oxidation vol.43, pp.35, 2018, https://doi.org/10.1039/c9nj02899d
  6. Decarboxylation of stearic acid over Ni/MOR catalysts vol.95, pp.1, 2018, https://doi.org/10.1002/jctb.6211
  7. Strategies for the Intensification of CO2 Valorization in the One-Step Dimethyl Ether Synthesis Process vol.59, pp.2, 2018, https://doi.org/10.1021/acs.iecr.9b05749
  8. Developing Cu-MOR@SiO2 Core-Shell Catalyst Microcapsules for Two-Stage Ethanol Direct Synthesis from DME and Syngas vol.59, pp.8, 2018, https://doi.org/10.1021/acs.iecr.9b05663
  9. New synthesis routes and catalytic applications of ferrierite crystals. Part 2: The effect of OSDA type on zeolite properties and catalysis vol.296, pp.None, 2018, https://doi.org/10.1016/j.micromeso.2019.109988
  10. Interaction effects between CuO-ZnO-ZrO2 methanol phase and zeolite surface affecting stability of hybrid systems during one-step CO2 hydrogenation to DME vol.345, pp.None, 2020, https://doi.org/10.1016/j.cattod.2019.08.014
  11. Valorization of OFMSW Digestate-Derived Syngas toward Methanol, Hydrogen, or Electricity: Process Simulation and Carbon Footprint Calculation vol.8, pp.5, 2018, https://doi.org/10.3390/pr8050526
  12. CuZnZr-Zeolite Hybrid Grains for DME Synthesis: New Evidence on the Role of Metal-Acidic Features on the Methanol Conversion Step vol.10, pp.6, 2020, https://doi.org/10.3390/catal10060671
  13. Methanol Conversion to Dimethyl Ether in Catalytic Zeolite Membrane Reactors vol.8, pp.28, 2018, https://doi.org/10.1021/acssuschemeng.0c02557
  14. Techno-Economic Assessment of Bio-Syngas Production for Methanol Synthesis: A Focus on the Water–Gas Shift and Carbon Capture Sections vol.7, pp.3, 2018, https://doi.org/10.3390/bioengineering7030070
  15. Silica-Related Catalysts for CO2 Transformation into Methanol and Dimethyl Ether vol.10, pp.11, 2018, https://doi.org/10.3390/catal10111282
  16. Stability of Zeolite HZSM-5 in Liquid Phase Dehydration of Methanol to Dimethyl Ether vol.151, pp.7, 2018, https://doi.org/10.1007/s10562-020-03454-y
  17. Regulation of hydrophilicity/hydrophobicity of aluminosilicate zeolites: a review vol.46, pp.4, 2021, https://doi.org/10.1080/10408436.2020.1819198
  18. Towards the Circular Economy of Rare Earth Elements: Lanthanum Leaching from Spent FCC Catalyst by Acids vol.9, pp.8, 2018, https://doi.org/10.3390/pr9081369
  19. A Carbonylation Zeolite with Specific Nanosheet Structure for Efficient Catalysis vol.15, pp.8, 2021, https://doi.org/10.1021/acsnano.1c04419
  20. Deactivation kinetics of γ-Al2O3 catalyst in methanol dehydration to dimethyl ether vol.310, pp.no.pc, 2018, https://doi.org/10.1016/j.fuel.2021.122443