Acknowledgement
Supported by : Ministry of Economy and Competitiveness
References
- G.A. Olah, Angew. Chem. Int. Ed. 44 (2005) 23636.
- G. Centi, S. Perathoner, ChemSusChem 3 (2010) 1274.
- A. Molino, M. Migliori, F. Nanna, Fuel 115 (2014) 41. https://doi.org/10.1016/j.fuel.2013.07.005
-
S. Kar, J. Kothandaram, A. Goeppert, G.K.S. Prakash, J.
$CO_2$ Util. 23 (2018) 212. https://doi.org/10.1016/j.jcou.2017.10.023 -
G. Bonura, M. Migliori, L. Frusteri, C. Cannilla, E. Catizzone, G. Giordano, F. Frusteri, J.
$CO_2$ Util. 24 (2018) 398. https://doi.org/10.1016/j.jcou.2018.01.028 - C. Arcoumanis, C. Bae, R. Crookes, E. Kinoshita, Fuel 87 (2008) 1014. https://doi.org/10.1016/j.fuel.2007.06.007
- E. Catizzone, G. Bonura, M. Migliori, F. Frusteri, G. Giordano, Molecules 23 (2018) 31.
- Z. Azizi, M. Rezaeimanesh, T. Tohidian, M.R. Rahimpour, Chem. Eng. Process. Process Intensif. 82 (2014) 150. https://doi.org/10.1016/j.cep.2014.06.007
- F.J. Keil, Microporous Mesoporous Mater. 26 (1999) 49.
- M. Stocker, Microporous Mesoporous Mater. 29 (1999) 3. https://doi.org/10.1016/S1387-1811(98)00319-9
- E. Catizzone, Z. Cirelli, A. Aloise, P. Lanzafame, M. Migliori, G. Giordano, Catal. Today 304 (2018) 39. https://doi.org/10.1016/j.cattod.2017.08.037
- M. Sanchez-Contador, A. Ateka, A.T. Aguayo, J. Bilbao, J. Ind. Eng. Chem. 63 (2018) 245. https://doi.org/10.1016/j.jiec.2018.02.022
- J.S. Martinez-Espin, M. Morten, T.V.W. Janssens, S. Svelle, P. Beato, U. Olsbye, Catal. Sci. Technol. 7 (2017) 2700. https://doi.org/10.1039/C7CY00129K
- P. Tian, Y. Wei, Z. Liu, ACS Catal. 5 (2015) 1922. https://doi.org/10.1021/acscatal.5b00007
- J.Q. Chen, A. Bozzano, B. Glover, T. Fuglerud, S. Kvisle, Catal. Today 106 (2005) 103. https://doi.org/10.1016/j.cattod.2005.07.178
- D. Chen, K. Moljord, A. Holmen, Microporous Mesoporous Mater. 164 (2012) 239. https://doi.org/10.1016/j.micromeso.2012.06.046
- N. Hadi, R. Alizadeh, A. Niaei, J. Ind. Eng. Chem. 54 (2017) 82. https://doi.org/10.1016/j.jiec.2017.05.021
- Y. Fan, Y. Cai, X. Li, H. Yin, J. Xia, J. Ind. Eng. Chem. 46 (2017) 139. https://doi.org/10.1016/j.jiec.2016.10.024
- M. Guisnet, P. Magnoux, Appl. Catal. 54 (1989) 1. https://doi.org/10.1016/S0166-9834(00)82350-7
- M. Guisnet, P. Magnoux, Catal. Today 36 (1997) 477. https://doi.org/10.1016/S0920-5861(96)00238-6
- U. Olsbye, S. Svelle, K.P. Lillerud, Z.H. Wei, Y.Y. Chen, J.F. Li, J.G. Wang, W.B. Fan, Chem. Soc. Rev. 44 (2015) 7155. https://doi.org/10.1039/C5CS00304K
- M. Guisnet, P. Magnoux, Appl. Catal. A: Gen. 212 (2001) 83. https://doi.org/10.1016/S0926-860X(00)00845-0
- K. Hemelsoet, J. Van der Mynsbrugge, K. De Wispelaere, M. Waroquier, V. Van Speybroeck, ChemPhysChem 14 (2013) 1526. https://doi.org/10.1002/cphc.201201023
- B. Arstad, J.B. Nicholas, J.F. Haw, J. Am. Chem. Soc. 126 (2004) 2991. https://doi.org/10.1021/ja035923j
- V. Van Speybroeck, K. Hemelsoet, K. De Wispelaere, Q. Qian, J. Van der Mynsbrugge, B. De Sterck, B.M. Weckhuysen, M. Waroquier, ChemCatChem 5 (2013) 173. https://doi.org/10.1002/cctc.201200580
- U. Olsbye, S. Svelle, M. Bjorgen, P. Beato, T.V.W. Janssens, F. Joensen, S. Bordiga, K.P. Lillerud, Angew. Chem. 51 (2012) 5810. https://doi.org/10.1002/anie.201103657
- A.T. Aguayo, A.G. Gayubo, R. Vivanco, M. Olazar, J. Bilbao, Appl. Catal. A: Gen. 283 (2005) 197. https://doi.org/10.1016/j.apcata.2005.01.006
- E. Catizzone, A. Aloise, M. Migliori, G. Giordano, J. Energy Chem. 26 (2017) 406. https://doi.org/10.1016/j.jechem.2016.12.005
- J. Kim, M. Choi, R. Ryoo, J. Catal. 269 (2010) 219. https://doi.org/10.1016/j.jcat.2009.11.009
- X. Chen, D. Xi, Q. Sun, N. Wang, Z. Dai, D. Fan, V. Veltchev, J. Yu, Microporous Mesoporous Mater. 234 (2016) 401. https://doi.org/10.1016/j.micromeso.2016.07.045
- D. Mores, J. Kornatyowski, U. Olsbye, B.M. Weckhuysen, Chem. Eur. J. 17 (2011) 2874. https://doi.org/10.1002/chem.201002624
- S. Muller, Y. Liu, M. Vishnuvarthan, X. Sun, A.C. van Veen, G.L. Haller, M. Sanchez-Sanchez, J.A. Lercher, J. Catal 325 (2015) 48. https://doi.org/10.1016/j.jcat.2015.02.013
- J. Li, Y. Wei, G. Liu, Y. Qi, P. Tian, B. Li, Y. He, Z. Liu, Catal. Today 171 (2011) 221. https://doi.org/10.1016/j.cattod.2011.02.027
- E. Catizzone, A. Aloise, M. Migliori, G. Giordano, Microporous Mesoporous Mater. 243 (2017) 102. https://doi.org/10.1016/j.micromeso.2017.02.022
- G. Giordano, A. Katovic, D. Caputo, Stud. Surf. Sci. Catal. 140 (2001) 307.
- P.A. Jacobs, J.A. Martens, Stud. Surf. Sci. Catal. 33 (1987) 217.
- E. Catizzone, A. Aloise, M. Migliori, G. Giordano, Appl. Catal. A 502 (2015) 215. https://doi.org/10.1016/j.apcata.2015.06.017
- B. Wichterlova, Z. Tvarukova, Z. Sobalik, P. Sarv, Microporous Mesoporous Mater. 24 (1998) 223. https://doi.org/10.1016/S1387-1811(98)00167-X
- M. Migliori, A. Aloise, E. Catizzone, G. Giordano, Ind. Eng. Chem. Res. 53 (2014) 14885. https://doi.org/10.1021/ie502775u
- P. Dauber-Osguthorpe, V.A. Roberts, D.J. Osguthorpe, J. Wolff, M. Genest, A.T. Hagler, Proteins 4 (1988) 31. https://doi.org/10.1002/prot.340040106
- G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Catal. Today 41 (1998) 207. https://doi.org/10.1016/S0920-5861(98)00050-9
- E. Choi, I. Nam, Y.G. Kim, J. Catal 161 (1996) 597. https://doi.org/10.1006/jcat.1996.0222
- B. Hunger, M. Heuchel, L.A. Clark, R.Q. Snurr, J. Phys. Chem. B 106 (2002) 3882. https://doi.org/10.1021/jp012688n
- A.G. Gayubo, P.L. Benito, A.T. Aguayo, M. Olazar, J. Bilbao, J. Chem. Techol. Biotechnol. 65 (1996) 186. https://doi.org/10.1002/(SICI)1097-4660(199602)65:2<186::AID-JCTB401>3.0.CO;2-J
- E. Catizzone, M. Migliori, A. Purita, G. Giordano, J. Energy Chem. (2018), doi: http://dx.doi.org/10.1016/j.jechem.2018.05.004.
- L. Qi, J. Li, Y. Wei, Y. He, L. Xu, Z. Liu, RSC Adv. 6 (2016) 52284. https://doi.org/10.1039/C6RA08393E
- J.T. Miller, P.D. Hopkins, B.L. Meyers, G.J. Ray, R.T. Roginski, G.W. Zajak, N.H. Rosembaum, J. Catal. 138 (1992) 115. https://doi.org/10.1016/0021-9517(92)90011-6
- F. Bleken, M. Bjorgen, L. Palumbo, S. Bordiga, S. Svelle, K.-P. Lillerud, U. Olsbye, Top. Catal. 52 (2009) 218. https://doi.org/10.1007/s11244-008-9158-0
- C.H. Bartholomew, Appl. Catal. A 212 (2001) 17. https://doi.org/10.1016/S0926-860X(00)00843-7
- Z. Liu, X. Dong, Y. Zhu, A.H. Emwas, D. Zhang, Q. Tian, Y. Han, ACS Catal. 5 (2015) 5837. https://doi.org/10.1021/acscatal.5b01350
- J.F. Haw, W. Song, D.M. Marcus, J.B. Nicholas, Acc. Chem. Res. 36 (2003) 317. https://doi.org/10.1021/ar020006o
- M. Bjorgen, S. Svelle, F. Joensen, J. Nerlova, S. Kolboe, F. Bonino, L. Palumbo, S. Bordiga, U. Olsbye, J. Catal. 209 (2007) 195.
- B.F. Mentzen, Mater. Res. Bull. 30 (1995) 1193. https://doi.org/10.1016/0025-5408(95)00132-8
- B.F. Mentzen, F. Lefebvre, Mater. Res. Bull 30 (1995) 613. https://doi.org/10.1016/0025-5408(95)00042-9
- P. Andy, D. Martin, M. Guisnet, R.G. Bell, C.R.A. Catlow, J. Phys. Chem. B 104 (2000) 4827. https://doi.org/10.1021/jp994169e
- M. Zokaie, D.S. Wragg, A. Gronvold, T. Fuglerud, J.H. Cavka, K.P. Lillerud, O. Swang, Microporous Mesoporous Mater. 165 (2013) 1. https://doi.org/10.1016/j.micromeso.2012.07.054
- B.T.W. Lo, L. Ye, J. Qu, J. Sun, J. Zheng, D. Kong, C.A. Murray, C.C. Tang, S.C. Edman Tsang, Angew. Chem. Int. Ed. 55 (2016) 5981. https://doi.org/10.1002/anie.201600487
- D. Rojo-Gama, M. Nielsen, D.S. Wragg, M. Dyballa, J. Holzinger, H. Falsig, L.F. Lundegaard, P. Beato, R.Y. Brogaard, K.P. Lillerud, U. Olsbye, S. Svelle, ACS Catal. 7 (2017) 8235. https://doi.org/10.1021/acscatal.7b02193
- H.-G. Jang, H.-K. Min, J.K. Lee, S.B. Hong, G. Seo, Appl. Catal. A 437 (2012) 120.
- D. Rojo-Gama, L. Mentel, G.N. Kalantzopoulos, D.K. Pappas, I. Dovgaliuk, U. Olsbye, K.P. Lillerud, P. Beato, L.F. Lundegaard, D.S. Wragg, S. Svelle, J. Phys. Chem. Lett. 9 (2018) 1324. https://doi.org/10.1021/acs.jpclett.8b00094
- D.S. Wragg, F.L. Bleken, M.G. O'Brien, H. Di Michiel, U. Olsbye, PhysChem-ChemPhys 9 (2018) 1324.
- B.F. Mentzen, P. Gelin, Mater. Res. Bull. 33 (1997) 109.
- H. van Koningsveld, J.C. Jansen, Microporous Mater. 6 (1996) 156.
- D.S. Wragg, R.E. Johnsen, M. Balasundaram, P. Norby, H. Fjellvag, A. Gronvold, T. Fuglerud, J. Hafizovic, O.B. Vistad, D. Akporiaye, J. Catal. 268 (2009) 290. https://doi.org/10.1016/j.jcat.2009.09.027
Cited by
- In Situ FT-IR Characterization of CuZnZr/Ferrierite Hybrid Catalysts for One-Pot CO 2 -to-DME Conversion vol.11, pp.11, 2018, https://doi.org/10.3390/ma11112275
- Deoxygenation of Stearic Acid over Cobalt-Based NaX Zeolite Catalysts vol.9, pp.1, 2018, https://doi.org/10.3390/catal9010042
- Hierarchical Low Si/Al Ratio Ferrierite Zeolite by Sequential Postsynthesis Treatment: Catalytic Assessment in Dehydration Reaction of Methanol vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/3084356
- Catalytic Performance of Layered Double Hydroxides (LDHs) Derived Materials in Gas‐Solid and Liquid‐Solid Phase Reactions vol.11, pp.14, 2019, https://doi.org/10.1002/cctc.201900499
- Distinguishing external and internal coke depositions on micron-sized HZSM-5 via catalyst-assisted temperature-programmed oxidation vol.43, pp.35, 2018, https://doi.org/10.1039/c9nj02899d
- Decarboxylation of stearic acid over Ni/MOR catalysts vol.95, pp.1, 2018, https://doi.org/10.1002/jctb.6211
- Strategies for the Intensification of CO2 Valorization in the One-Step Dimethyl Ether Synthesis Process vol.59, pp.2, 2018, https://doi.org/10.1021/acs.iecr.9b05749
- Developing Cu-MOR@SiO2 Core-Shell Catalyst Microcapsules for Two-Stage Ethanol Direct Synthesis from DME and Syngas vol.59, pp.8, 2018, https://doi.org/10.1021/acs.iecr.9b05663
- New synthesis routes and catalytic applications of ferrierite crystals. Part 2: The effect of OSDA type on zeolite properties and catalysis vol.296, pp.None, 2018, https://doi.org/10.1016/j.micromeso.2019.109988
- Interaction effects between CuO-ZnO-ZrO2 methanol phase and zeolite surface affecting stability of hybrid systems during one-step CO2 hydrogenation to DME vol.345, pp.None, 2020, https://doi.org/10.1016/j.cattod.2019.08.014
- Valorization of OFMSW Digestate-Derived Syngas toward Methanol, Hydrogen, or Electricity: Process Simulation and Carbon Footprint Calculation vol.8, pp.5, 2018, https://doi.org/10.3390/pr8050526
- CuZnZr-Zeolite Hybrid Grains for DME Synthesis: New Evidence on the Role of Metal-Acidic Features on the Methanol Conversion Step vol.10, pp.6, 2020, https://doi.org/10.3390/catal10060671
- Methanol Conversion to Dimethyl Ether in Catalytic Zeolite Membrane Reactors vol.8, pp.28, 2018, https://doi.org/10.1021/acssuschemeng.0c02557
- Techno-Economic Assessment of Bio-Syngas Production for Methanol Synthesis: A Focus on the Water–Gas Shift and Carbon Capture Sections vol.7, pp.3, 2018, https://doi.org/10.3390/bioengineering7030070
- Silica-Related Catalysts for CO2 Transformation into Methanol and Dimethyl Ether vol.10, pp.11, 2018, https://doi.org/10.3390/catal10111282
- Stability of Zeolite HZSM-5 in Liquid Phase Dehydration of Methanol to Dimethyl Ether vol.151, pp.7, 2018, https://doi.org/10.1007/s10562-020-03454-y
- Regulation of hydrophilicity/hydrophobicity of aluminosilicate zeolites: a review vol.46, pp.4, 2021, https://doi.org/10.1080/10408436.2020.1819198
- Towards the Circular Economy of Rare Earth Elements: Lanthanum Leaching from Spent FCC Catalyst by Acids vol.9, pp.8, 2018, https://doi.org/10.3390/pr9081369
- A Carbonylation Zeolite with Specific Nanosheet Structure for Efficient Catalysis vol.15, pp.8, 2021, https://doi.org/10.1021/acsnano.1c04419
- Deactivation kinetics of γ-Al2O3 catalyst in methanol dehydration to dimethyl ether vol.310, pp.no.pc, 2018, https://doi.org/10.1016/j.fuel.2021.122443