DOI QR코드

DOI QR Code

Selective doping of Li-rich layered oxide cathode materials for high-stability rechargeable Li-ion batteries

  • Han, Dongwook (Department of Materials Science and Engineering, Hallym University) ;
  • Park, Kwangjin (Department of Mechanical Engineering, Gachon University) ;
  • Park, Jun-Ho (Energy Lab, Samsung Advanced Institute of Technology) ;
  • Yun, Dong-Jin (Analytical Science Lab, Samsung Advanced Institute of Technology) ;
  • Son, You-Hwan (Energy Lab, Samsung Advanced Institute of Technology)
  • 투고 : 2018.01.18
  • 심사 : 2018.07.26
  • 발행 : 2018.12.25

초록

We report the discovery of Li-rich $Li_{1+x}[(Ni_{0.225}Co_{0.15}Mn_{0.625})_{1-y}V_y]O_2$ as a cathode material for rechargeable lithium-ion batteries in which a small amount of tetravalent vanadium ($V^{4+}$) is selectively and completely incorporated into the manganese sites in the lattice structure. The unwanted oxidation of vanadium to form a $V_2O_5-like$ secondary phase during high-temperature crystallization is prevented by uniformly dispersing the vanadium ions in coprecipitated $[(Ni_{0.225}Co_{0.15}Mn_{0.625})_{1-y}V_y](OH)_2$ particles. Upon doping with $V^{4+}$ ions, the initial discharge capacity (>$275mA\;h\;g^{-1}$), capacity retention, and voltage decay characteristics of the Li-rich layered oxides are improved significantly in comparison with those of the conventional undoped counterpart.

키워드

과제정보

연구 과제 주관 기관 : Hallym University, National Research Foundation of Korea (NRF)

참고문헌

  1. M. Armand, J.-M. Tarascon, Nature 451 (2008) 652. https://doi.org/10.1038/451652a
  2. B. Dunn, H. Kamath, J.-M. Tarascon, Science 334 (2011) 928. https://doi.org/10.1126/science.1212741
  3. J.B. Goodenough, Y. Kim, Chem. Mater. 22 (2010) 587. https://doi.org/10.1021/cm901452z
  4. H. Yang, S. Amiruddin, H.J. Bang, S.-K. Sun, J. Prakash, J. Ind. Eng. Chem. 12 (2006) 12.
  5. K. Sun, C. Peng, Z. Li, Q. Xiao, G. Lei, Q. Xiao, Y. Ding, Z. Hu, RSC Adv. 6 (2016) 28729. https://doi.org/10.1039/C6RA02688E
  6. Z. Zheng, Z. Wu, Y. Zhong, C.-H. Shen, W. Hua, B.-B. Xu, C. Yu, B.-H. Zhong, X.-D. Guo, RSC Adv. 5 (2015) 37330. https://doi.org/10.1039/C5RA03289J
  7. Y. Cho, P. Oh, J. Cho, Nano Lett. 13 (2013) 1145. https://doi.org/10.1021/nl304558t
  8. A. Manthiram, J.C. Knight, S.-T. Myung, S.-M. Oh, Y.-K. Sun, Adv. Energy Mater. 6 (2016)1501010. https://doi.org/10.1002/aenm.201501010
  9. Z. Zheng, W.-B. Hua, C. Yu, B.-B. Xu, J.-Z. Wang, B.-H. Zhong, Z.-Y. Zhang, Dalton Trans. 44 (2015) 14255. https://doi.org/10.1039/C5DT01678A
  10. J. Yan, X. Liu, B. Li, RSC Adv. 4 (2014) 63268. https://doi.org/10.1039/C4RA12454E
  11. Y.N. Ko, J.H. Kim, J.-K. Lee, Y.C. Kang, J.-H. Lee, Electrochim. Acta 69 (2012) 345. https://doi.org/10.1016/j.electacta.2012.03.008
  12. O. Sha, Z. Tang, S. Wang, W. Yuan, Q. Xu, L. Ma, Electrochim. Acta 77 (2012) 250. https://doi.org/10.1016/j.electacta.2012.05.096
  13. B. Song, M.O. Lai, L. Lu, Electrochim. Acta 80 (2012) 187. https://doi.org/10.1016/j.electacta.2012.06.118
  14. L.F. Jiao, M. Zhang, H.T. Yuan, M. Zhao, J. Guo, W. Wang, X.D. Zhou, Y.M. Wang, J. Power Sources 167 (2007) 178. https://doi.org/10.1016/j.jpowsour.2007.01.070
  15. S.H. Park, Y.-K. Sun, J. Power Sources 119 (2003) 161.
  16. M. Tabuchi, Y. Nabeshima, T. Takeuchi, H. Kageyama, J. Imaizumi, H. Shibuya, J. Akimoto, J. Power Sources 221 (2013) 427. https://doi.org/10.1016/j.jpowsour.2012.08.055
  17. M. Tabuchi, J. Power Sources 196 (2011) 3611. https://doi.org/10.1016/j.jpowsour.2010.12.060
  18. Z. Tang, Z. Wang, X. Li, W. Peng, J. Power Sources 204 (2012) 187. https://doi.org/10.1016/j.jpowsour.2011.12.040
  19. F. Kong, R.C. Longo, M.-S. Park, J. Yoon, D.-H. Yeon, J.-H. Park, W.-H. Wang, S. Kc, S.-G. Doo, K. Cho, J. Mater. Chem. A 3 (2015) 8489. https://doi.org/10.1039/C5TA01445J
  20. K.A. Jarvis, Z. Deng, L.F. Allard, A. Manthiram, P.J. Ferreira, Chem. Mater. 23 (2011) 3614. https://doi.org/10.1021/cm200831c
  21. J. Kim, Solid State Ionics 164 (2003) 43. https://doi.org/10.1016/j.ssi.2003.08.003
  22. C. Lu, S. Yang, H. Wu, Y. Zhang, X. Yang, T. Liang, Electrochim. Acta 209 (2016) 448. https://doi.org/10.1016/j.electacta.2016.05.119
  23. H. Zhu, T. Xie, Z. Chen, L. Li, M. Xu, W. Wang, Y. Lai, J. Li, Electrochim. Acta 135 (2014) 77. https://doi.org/10.1016/j.electacta.2014.04.183
  24. J. Gao, J. Kim, A. Manthiram, Electrochem. Commun. 11 (2009) 84. https://doi.org/10.1016/j.elecom.2008.10.036
  25. A. Boulineau, L. Simonin, J.-F. Colin, E. Canevet, L. Daniel, S. Patoux, Chem. Mater. 24 (2012) 3558. https://doi.org/10.1021/cm301140g

피인용 문헌

  1. A review of the preparation and performance improvement of V6O13 as a cathode material for lithium-ion batteries vol.35, pp.5, 2018, https://doi.org/10.1080/10667857.2019.1678858
  2. Inorganic Fillers in Composite Gel Polymer Electrolytes for High-Performance Lithium and Non-Lithium Polymer Batteries vol.11, pp.3, 2018, https://doi.org/10.3390/nano11030614
  3. Highly reversible lithiation/delithiation in indium antimonide with hybrid buffering matrix vol.45, pp.11, 2018, https://doi.org/10.1002/er.6848
  4. Unraveling improved electrochemical kinetics of In2Te3-based anodes embedded in hybrid matrix for Li-ion batteries vol.429, pp.None, 2018, https://doi.org/10.1016/j.cej.2021.132395
  5. Li-rich layered oxides: Structure, capacity and voltage fading mechanisms and solving strategies vol.61, pp.None, 2018, https://doi.org/10.1016/j.partic.2021.05.011