DOI QR코드

DOI QR Code

Development of High-Density Information Storage Media by Employing the Six Sigma Methodology

식스 시그마 기법을 활용한 고밀도 정보저장 매체 개발

  • Lee, Myung-Bok (Division of Mechanical and Metallic Mold Engineering, Gwangju University)
  • 이명복 (광주대학교 기계.금형공학부)
  • Received : 2018.06.30
  • Accepted : 2018.08.10
  • Published : 2018.09.28

Abstract

Six sigma methodology is the management tools not only can cause productivity enhancement through the quality control and cost reduction of products and services but also can be applied to various activities of corporates such as research and development. Development of high-density information storage media and devices is indispensible to accomplish the information convergence era. In this paper, we report the case of applying six sigma methodology and tools to the development project of high-density information storage media. The standard DMAIC process was applied to the project and pursuing goals and tools and results in each stage were explained in detail. By adopting the methodology, we could establish fabrication methods of information storage media of recording density higher than $250Gb/in^2$ with high uniformity and reproducibility. The magnetic property and performance of fabricated media were confirmed through measurement of the magnetic hysteresis curve.

식스 시그마 기법은 제품과 서비스의 품질관리와 원가 절감을 통한 생산성 향상 뿐만 아니라, 연구개발을 비롯한 기업 경영의 다양한 영역에 적용할 수 있는 관리 기법이다. 또한 정보 융합 시대의 실현을 위하여 고밀도 정보저장 매체 및 장치의 개발은 필수적 요건이다. 본 논문에서는 고밀도 정보저장 매체 개발 과제에 식스 시그마 방법론과 기법을 적용한 사례에 대하여 보고하고자 한다. 식스 시그마 프로세스는 표준적으로 사용되는 DMAIC 프로세스를 적용하였으며 각 단계별로 달성하고자 하는 목표와 적용한 도구 및 결과에 대하여 상세히 설명하였다. 본 기법을 활용함으로써 $250Gb/in^2$ 이상의 높은 기록밀도를 갖는 정보저장 매체를 균일하고 재현성 있게 형성할 수 있는 제조 방법을 확립하였으며, 제조된 매체의 자기적 특성과 성능을 자기이력곡선을 통하여 확인하였다.

Keywords

References

  1. S. Chowdhury. (2002). Design for Six Sigma: The revolutionary process for achieving extraordinary profits, Prentice Hall, ISBN 9780793152247.
  2. T. Bertels. (2003). Rath & Strong's Six Sigma Leadership Handbook, John Wiley and Sons, pp. 57-83, ISBN 9780471251248.
  3. J. Antony & R. Banuelas. (2002). Key ingredients for the effective implementation of Six Sigma program. Measuring Business Excellence, 6(4), 20-27. DOI: 10.1108/13683040210451679
  4. C. R. Superville & S. Gupta. (2001). Issues in modeling, monitoring and managing quality costs. The TQM Magazine, 13(6), 419-423. https://doi.org/10.1108/EUM0000000006178
  5. J. d. Mast & J. Lokkerbol. (2012). An analysis of the Six Sigma DMAIC method from the perspective of problem solving. International Journal of Production Economics, 139(2), 604-614. DOI: 10.1016/j.ijpe.2012.05.035
  6. T. Hasenkamp & A. Olme. (2008). Introducing Design for Six Sigma at SKF. International Journal of Six Sigma and Competitive Advantage, 4(2), 172-189. DOI: 10.1504/IJSSCA.2008.020281
  7. P. Kaushik & D. Khanduja. (2009). Application of Six Sigma DMAIC methodology in thermal power plants: A case study. Total Quality Management & Business Excellence, 20(2), 197-207. DOI: 10.1080/14783360802622995
  8. I. Zana, G. Zangari, & M. Shamsuzzoha. (2005). Enhancing the perpendicular magnetic anisotropy of Co-Pt(P) films by epitaxial electrodeposition onto Cu(111) substrates. Journal of Magnetism and Magnetic Matererials, 292, 266-280. DOI: 10.1016/j.jmmm.2004.11.141
  9. B. D. Terris. (2009). Fabrication challenges for patterned recording media. Journal of Magnetism and Magnetic Materials, 321(6), 512-517. DOI: 10.1016/j.jmmm.2008.05.046
  10. R. Ruiz, E. Dobisz & T. R. Albrecht. (2011). Rectangular patterns using block copolymer directed assembly for high bit aspect ratio patterned media. ACS Nano, 5(1), 79-84. DOI: 10.1021/nn101561p
  11. C. A. Ross. (2001). Patterned magnetic recording media. Annual Review of Materials Research, 31, 203-235. DOI: 10.1146/annurev.matsci.31.1.203
  12. T. Ouchi, Y. Arikawa & T. Homma. (2008). Fabrication of CoPt magnetic nanodot arrays by electrodeposition process. Journal of Magnetism and Magetic Materials, 320(22), 3104-3107. DOI: 10.1016/j.jmmm.2008.08.022
  13. D. H. Lee, E. H. Cho, H. S. Kim, B. K. Lee, M. B. Lee, J. S. Sohn, C. H. Lee & S. J. Suh. (2008). Multilayer soft mold for UV imprinting the 50 nm pitch dot array. Journal of Vacuum Science and Technology B, 26(2), 514-517. DOI: 10.1116/1.2839880
  14. G. M. McClelland, M. W. Hart, C. T. Rettner, M. E. Best, K. R. Carter & B. D. Terris. (2002). Nanoscale patterning of magnetic islands by imprint lithography using a flexible mold. Applied Physics Letters, 81, 1483-1485. DOI: 10.1063/1.1501763
  15. A. I. Gapin, X. R. Ye, J. F. Aubuchon, L. H. Chen, Y. J. Tang & S. Jin. (2006). CoPt patterned media in anodized aluminum oxide templates. Journal of Applied Physics, 99(8), 08G902. DOI: 10.1063/1.2163289
  16. X. Yang, S. Xiao, W. Hu, J. Hwu, R. Veerdonk, K. Wago, K. Lee & D. Kuo. (2014). Integration of nanoimprint lithography with block copolymer directed self-assembly for fabrication of a sub-20 nm template for bit-patterned media. Nanotechnology, 25(39), 395301. DOI: 10.1088/0957-4484/25/39/395301
  17. R. A. Griffiths, A. Williams, C. Oakland, J. Roberts, A. Vijayaraghavan & T. Thomson. (2013). Directed self-assembly of block copolymers for use in bit patterned media fabrication. Journal of Physics D: Applied Physics, 46(50), 503001. DOI: 10.1088/0022-3727/46/50/503001