DOI QR코드

DOI QR Code

LATTICE ORDERED SOFT NEAR RINGS

  • Mahmood, Tahir (Department of Mathematics International Islamic University) ;
  • Rehman, Zia Ur (Department of Mathematics International Islamic University) ;
  • Sezgin, Aslihan (Department of Elementary Education, Amasya University)
  • Received : 2018.03.07
  • Accepted : 2018.09.10
  • Published : 2018.09.30

Abstract

Keeping in view the expediency of soft sets in algebraic structures and as a mathematical approach to vagueness, in this paper the concept of lattice ordered soft near rings is introduced. Different properties of lattice ordered soft near rings by using some operations of soft sets are investigated. The concept of idealistic soft near rings with respect to lattice ordered soft near ring homomorphisms is deliberated.

Keywords

References

  1. H. Aktas and N. Cagman, Soft sets and soft groups, Inform. Sci. 177 (2007) 2726-2735. https://doi.org/10.1016/j.ins.2006.12.008
  2. M. I. Ali, A note on soft sets, rough sets and fuzzy soft sets, Comput. Math. Appl. 11 (2011) 3329-3332.
  3. M. I. Ali, F. Feng, X. Liu, W. K. Min and M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. 57 (2009) 1547-1553. https://doi.org/10.1016/j.camwa.2008.11.009
  4. M. I. Ali, T. Mahmood, M. M. Rehman and M. F. Aslam, On lattice ordered soft sets, Appl Soft Comput. 36 (2015) 499-505. https://doi.org/10.1016/j.asoc.2015.05.052
  5. M. Aslam and M. Qurashi, Some contributions to soft groups, Annals of Fuzzy Math. and Infor. 4 (2012) 177-195.
  6. A. O. Atagun and A. Sezgin, Soft substructures of rings, fields and modules, Comput. Math. Appl. 61 (2011) 592-601. https://doi.org/10.1016/j.camwa.2010.12.005
  7. G. Birkhoff, Lattice theory, American Mathematical Socity (1967).
  8. F. Feng, Y. B. Jun and X. Zhao, Soft semirings, Comput. Math. Appl. 56 (2008) 2621-2628. https://doi.org/10.1016/j.camwa.2008.05.011
  9. F. Feng, C. Li, B. Davvaz and M. I. Ali, Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Computing 14 (2010) 899-911 https://doi.org/10.1007/s00500-009-0465-6
  10. F. Tasdemir, A. O. Atagun, H. Altndis, Different prime N-ideals and IFP N-ideals, Indian J. Pure Appl. Math. 44(4), 527-542, 2013. https://doi.org/10.1007/s13226-013-0028-5
  11. Y. B. Jun, Soft BCK/BCI-algebras, Comput. Math. Appl. 56 (2008) 1408-1413. https://doi.org/10.1016/j.camwa.2008.02.035
  12. G. J. Klir and T. A. Folger, Fuzzy sets, Uncertainty and Inform. Prentice-Hall 24 (1987) 141-160.
  13. X. Ma, Q. Liu, J. Zhan, A survey of decision making methods based on certain hybrid soft set models, Artificial Intelligence Review 47 (2017) 507-530. https://doi.org/10.1007/s10462-016-9490-x
  14. P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555-562. https://doi.org/10.1016/S0898-1221(03)00016-6
  15. P. K. Maji, A. R. Roy and R. Biswas, An Application of soft sets in a decision making problem, Comput. Math. Appl. 44 (2002) 1077-1083. https://doi.org/10.1016/S0898-1221(02)00216-X
  16. D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999) 19-31.
  17. Z. Pawlak, Rough sets, Int. J. Inform. Comput. Sci. 11 (1982) 341-356. https://doi.org/10.1007/BF01001956
  18. G. Pilz, Near-rings, N. Holl. Publ. Comp. Amst. New York-Oxford, 1983.
  19. A. Sezgin, A. O. Atagun and E. Aygun, A Note on soft near-rings and Idealistic soft near-rings, Comut. Math. Appl. 25 (2011) 53-68.
  20. A. Sezgin and A. O. Atagun, On operations of soft sets, Comput. Math. Appl. 61 (2011) 1457-1467. https://doi.org/10.1016/j.camwa.2011.01.018
  21. Q. M. Sun, Z. L. Zhang and J. Liu, Soft sets and soft modules, Lecture notes in Comput. Sci. 5009 (2008) 403-409.
  22. J. D. Yadav, Fuzzy soft near ring, MNK. Appl. 4 (2015) 94-101.
  23. C. F. Yang, A Note on soft set theory, Comput. Math. Appl. 56 (2008) 1899-1900. https://doi.org/10.1016/j.camwa.2008.03.019
  24. J. Zhan, Q. Liu and T. Herawan, A novel soft rough set: soft rough hemirings and its multicriteria group decision making, Applied Soft Computing 54 (2017) 393-402. https://doi.org/10.1016/j.asoc.2016.09.012
  25. J. Zhan, M. I. Ali and N. Mehmood, On a novel uncertain soft set model: Z-soft fuzzy rough set model and corresponding decision making methods, Applied Soft Computing 56 (2017) 446-457. https://doi.org/10.1016/j.asoc.2017.03.038
  26. J. Zhan, Q. Liu and B. Davvaz, A new rough set theory: rough soft hemirings, Journal of Intelligent & Fuzzy Systems 28 (2015) 1687-1697.
  27. L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

Cited by

  1. A Novel Approach towards Bipolar Soft Sets and Their Applications vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/4690808
  2. Linear Diophantine Uncertain Linguistic Power Einstein Aggregation Operators and Their Applications to Multiattribute Decision Making vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/4168124