DOI QR코드

DOI QR Code

The Relationship between Thermal Preference and Hibernation Strategies in Endangered Plecotus ognevi

멸종위기 야생생물 II급 토끼박쥐 Plecotus ognevi의 온도선호도와 동면 전략

  • Kim, Sun-Sook (Division of Basic Research, Bureau of Ecological Research, National Institute of Ecology) ;
  • Choi, Yu-Seong (Biological Resources Research Department, National Institute of Biological Resources) ;
  • Kim, Lyoun (Cave Research Institute of Korea)
  • 김선숙 (국립생태원 생태연구본부 생태기반연구실) ;
  • 최유성 (국립생물자원관 생물자원연구부) ;
  • 김련 ((사)한국동굴연구소)
  • Received : 2018.11.09
  • Accepted : 2018.12.18
  • Published : 2018.12.31

Abstract

Hibernation is regarded as a physiological and behavioral adaptation that permits the survival of animals such as bats during seasonal periods of energy shortage. This study investigated the hibernation period of Plecotus ognevi in the temperate climate zone and the relationship between the thermal preference and hibernating process of bats. We hypothesized that the hibernation period of bats is closely related to the external temperature and temperature preference of bat species in the temperate region. To verify this hypothesis, we surveyed the distribution of the P. ognevi population in South Korea, and the temperature preference and the characteristics of hibernacula of P. ognevi. We predict that hibernation in the bat will begin when the external temperature drops below the thermal preference of the species and will leave from hibernation when the external temperature is higher than the thermal preference. P. ognevi hibernated in roosts maintained in low temperature ambient conditions with $-3.5{\sim}7.5^{\circ}C$). The body temperatures (averaged $3.01{\pm}1.30^{\circ}C$, ranged $0.1{\sim}7.8^{\circ}C$) of hibernating bats were closely related to the rock surface temperatures rather than the ambient temperatures. The bats began to hibernate in late November and final arousals occurred in mid-March, so that the total length of the hibernation was 115~120 days. The period of hibernation was strongly influenced by fluctuations in the external mean temperature. This study suggests that the onset and termination of P. ognevi hibernation is due to the interaction between the temperature of the hibernacula and that of the external environment and is based on the thermal preference of the bats. The study also suggests that the hibernation strategy such as thermal preference and hibernation periods of this species affect to distribution as bat species adapting to a severely climate.

온대지역에 분포하는 박쥐가 생존을 위하여 선택하는 동면은 에너지가 고갈되는 시기에 직면하는 에너지 문제해결을 위한 적응현상이다. 본 연구에서 온대지역에 분포하는 토끼박쥐의 온도선호도와 동면전략(동면기간)에 대한 연구를 수행하였다. 박쥐의 온도선호도와 동면전략과의 연관성을 알아보기 위하여 박쥐의 온도선호도는 동면기간에 영향을 준다는 가설 검증을 하였다. 이를 위하여 토끼박쥐의 분포를 확인하였고 동면처의 환경특성 및 토끼박쥐의 온도선호도를 도출하였다. 또한 토끼박쥐는 외부 최저 기온이 온도선호도보다 낮아지는 시기에 동면처에 도착하여 외부 최저 기온이 온도선호도보다 높아지는 시기에 동면처를 떠날 것으로 예측하였다. 동면중인 토끼박쥐의 평균 체온은 $3.03{\pm}1.30^{\circ}C$(range $0.1{\sim}7.6^{\circ}C$, n=179)로 대기온도 ($T_a$)에 비해 암벽온도 ($T_r$)와 밀접하게 상관되었다. 토끼박쥐는 외부 기온이 온도선호도보다 낮아지는 11월 중순 이후에 동면처에 도착하여 115~120일 동안 동면처에 머물렀다. 또한 외부 기온이 온도선호도보다 높아지는 시기인 3월 중순 이후에 동면처를 떠났다. 본 연구의 결과는 토끼박쥐의 동면기간은 대상 종의 온도선호도와 외부기온과의 상호작용에 의한 것임을 시사하며 또한 대상 종의 온도선호도 및 동면기간 같은 동면전략은 대상 종의 분포 제한 요인으로 작용될 수 있다.

Keywords

Acknowledgement

Grant : 식충성 박쥐의 생태적 역할과 기능

References

  1. Arlettaz, R., C. Ruchet, J. Aeschimann, E. Brun, M. Genoud and P. Vogel. 2000. Physiological traits affecting the distribution and wintering strategy of the bat Tadarida teniotis. Ecology 81: 1004-1014. https://doi.org/10.1890/0012-9658(2000)081[1004:PTATDA]2.0.CO;2
  2. Barclay, R.M., M.C. Kalcounis, L.H. Crampton, C. Stefan, M.J. Vonhof, L. Wilkinson and R.M. Brigham, 1996. Can external radio transmitters be used to assess body temperature and torpor in bats? Journal of Mammalogy 77: 1102-1106. https://doi.org/10.2307/1382791
  3. Bogdanowicz, W. and Z. Urbanczyk. 1983. Some ecological aspects of bats hibernating in city of Poznan. Acta Theriologica 28: 371-385. https://doi.org/10.4098/AT.arch.83-32
  4. Boyles, J.G., B. Smit and A.E. McKechnie. 2011. Does use of the torpor cut-off method to analyze variation in body temperature cause more problems than it solves? Journal of Thermal Biology 36: 373-375. https://doi.org/10.1016/j.jtherbio.2011.07.007
  5. Boyles, J.G., M.B. Dunbar, J.J. Storm and V. Brack. 2007. Energy availability influences microclimate selection of hibernating bats. Journal of Experimental Biology 210: 4345-4350. https://doi.org/10.1242/jeb.007294
  6. Busotti, S., A. Terlizzi, S. Fraschetti, G. Belmonte and F. Boero. 2006. Spatial and temporal variability of sessile benthos in shallow Mediterranean marin caves. Marin Ecology Progress Series 325: 109-119. https://doi.org/10.3354/meps325109
  7. CHA. 2004. The report of caves in Chungcheongbuk-do I.
  8. CHA. 2006. The report of caves in Chungcheongbuk-do II.
  9. CHA. 2008. The report of caves in Chungcheongbuk-do III.
  10. Corbet, G.B. 1978. The mammals of the Palaearctic region: a taxonomic review. British Museum (Natural History).
  11. Dausmann, K.H. 2005. Measuring body temperature in the field-evaluation of external vs. implanted transmitters in a small mammal. Journal of Thermal Biology 30: 195-202. https://doi.org/10.1016/j.jtherbio.2004.11.003
  12. Dunbar, M.B. and R.M. Brigham. 2010. Thermoregulatory variation among populations of bats along a latitudinal gradient. Journal of Comparative Physiology B 180: 885-893. https://doi.org/10.1007/s00360-010-0457-y
  13. Dunbar, M.B. and T.E. Tomasi. 2006. Arousal patterns, metabolic rate, and an energy budget for eastern red bats (Lasiurus borealis) in winter. Journal of Mammalogy 87: 1096-1102. https://doi.org/10.1644/05-MAMM-A-254R3.1
  14. Furman, A. and A. Ozgul. 2002. Distribution of cave-dwelling bats and conservation status of underground habitats in the Istanbul area. Ecological Research 17: 69-77. https://doi.org/10.1046/j.1440-1703.2002.00468.x
  15. Geiser, F. 2004. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annual Review of Physiology 66: 239-274. https://doi.org/10.1146/annurev.physiol.66.032102.115105
  16. Geiser, F. 2013. Hibernation. Current Biology 23: R188-R193. https://doi.org/10.1016/j.cub.2013.01.062
  17. Geiser, F. and C. Stawski. 2011. Hibernation and torpor in tropical and subtropical bats in relation to energetics, extinctions, and the evolution of endothermy. Integrative and Comparative Biology 51: 337-348. https://doi.org/10.1093/icb/icr042
  18. Geiser, F. and G.J. Kenagy. 1988. Torpor duration in relation to temperature and metabolism in hibernating ground squirrels. Physiological Zoology 61: 442-449. https://doi.org/10.1086/physzool.61.5.30161266
  19. Geiser, F. and T. Ruf. 1995. Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiological Zoology 68: 935-966. https://doi.org/10.1086/physzool.68.6.30163788
  20. Grigg, G. and L. Beard. 2000. Hibernation by echidnas in mild climates: hints about the evolution of endothermy, p. 5-19. In: Life in the Cold (Heldmaier, G. and M. Klingenspor, eds.). Springer, Berlin Heidelberg.
  21. Hock, R.I. 1951. The metabolic rates and body temperatures of bats. The Biological Bulletin 101: 289-299. https://doi.org/10.2307/1538547
  22. Horacek, I., Hanak, V. and J. Gaisler. 2000. Bats of the Palearctic region: a taxonomic and biogeographic review, p. 11-157. In: Proceedings of the VIIIth European Bat Research Symposium Vol. 1: Approaches to Biogeography and Ecology of Bats (Woloszyn, B.R., ed.). Institute of Systematics and Evolution of Animals PAS, Krakow.
  23. Humphries, M.M., D.W. Thomas and D.L. Kramer. 2003. The role of energy availability in mammalian hibernation: a cost‐benefit approach. Physiological and Biochemical Zoology 76: 165-179. https://doi.org/10.1086/367950
  24. Humphries, M.M., D.W. Thomas and J.R. Speakman. 2002. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418: 313-316. https://doi.org/10.1038/nature00828
  25. John, D. 2005. Annual lipid cycles in hibernators: integration of physiology and behavior. Annual Review of Nutrition 25: 469-497. https://doi.org/10.1146/annurev.nutr.25.050304.092514
  26. Jurczyszyn, M. and R. Bajaczyk. 2001. Departure dynamics of Myotis daubentonii (Kuhl, 1817) (Mammalia, Chiroptera) from their hibernaculum. Mammalia 65: 121-130.
  27. Kim, S.S., Y.S. Choi and J.C. Yoo. 2013. Thermal preference and hibernation period of Hodgson's bats (Myotis formosus) in the temperate zone: how does the phylogenetic origin of a species affect its hibernation strategy? Canadian Journal of Zoology 91: 47-55. https://doi.org/10.1139/cjz-2012-0145
  28. Kim, S.S., Y.S. Choi and J.C. Yoo. 2014. Thermal preference and the selection of hibernacula in seven cave dwelling bats. Korean Journal of Ecology and Environment 47: 258-272. https://doi.org/10.11614/KSL.2014.47.4.258
  29. Kokurewicz, T. 2004. Sex and age related habitat selection and mass dynamics of Daubenton's bats Myotis daubentonii (Kuhl, 1817) hibernating in natural conditions. Acta Chiropterologica 6: 121-144. https://doi.org/10.3161/001.006.0110
  30. Kruskop, S.V., A.V. Borisenko, N.V. Ivanova, B.K. Lim and J.L. Eger, 2012. Genetic diversity of northeastern Palaearctic bats as revealed by DNA barcodes. Acta Chiropterologica 14: 1-14. https://doi.org/10.3161/150811012X654222
  31. Kunz, T.H. and L.F. Lumsden. 2003. Ecology of cavity and foliage roosting bats, p. 3-89. In: Bat Ecology (Kunz, T.H. and M.B. Fenton, eds.). The University of Chicago Press, Chicago.
  32. Lovegrove, B.G. 2000. Daily heterothermy in mammals: coping with unpredictable environments, p. 29-40. In: Life in the Cold (Heldmaier, G. and M. Klingenspor, eds.). Springer, Berlin Heidelberg.
  33. Lyman, C.P., J.S. Willis, A. Malan and L.C.H. Wang, eds. 1982. Hibernation and Torpor in Mammals and Birds. Academic Press, New York.
  34. Masing, M. and L. Lutsar. 2007. Hibernation temperatures in seven species of sedentary bats (Chiroptera) in northeastern Europe. Acta Zoologica Lituanica 17: 47-55. https://doi.org/10.1080/13921657.2007.10512815
  35. McNab, B.K. 1974. The behavior of temperate cave bats in a subtropical environment. Ecology 55: 943-958. https://doi.org/10.2307/1940347
  36. McNab, B.K. 1982. Evolutionary alternative in the physiological ecology of bats, p. 151-196. In: Ecology of Bats (Kunz, T.H., ed.). Plenum Publishing Corporation, New York.
  37. Mitchell-Jones, A.J. and A.P. McLeish, 2004. Bat workers' manual, 3rd ed. Joint Nature Conservation Committee.
  38. Nagel, A. and R. Nagel. 1991. How do bats choose optimal temperatures for hibernation? Comparative Biochemistry and Physiology Part A 99: 323-326.
  39. Nedergaard, J., B. Cannon and R. Jaenicke. 1990. Mammalian hibernation. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 326: 669-686. https://doi.org/10.1098/rstb.1990.0038
  40. NIBR. 2012a. National List of Species of Korea "Vertebrates".
  41. NIBR. 2012b. DNA Barcode system for Korean indigenous species.
  42. NIER. 2004. The report of caves survey in Korea.
  43. O’Donnell, C.F.J. 2000. Conservation status and causes of decline of the threatened New Zealand long-tailed bat Chalinolobus tuberculatus (Chiroptera: Vespertilionidae). Mammal Review 30: 89-106. https://doi.org/10.1046/j.1365-2907.2000.00059.x
  44. Perry, R.W. 2013. A review of factors affecting cave climates for hibernating bats in temperate North America. Environmental Review 21: 28-39. https://doi.org/10.1139/er-2012-0042
  45. Pyeongchang-Gun. 2005. The report of caves investigation in Pyeongchang-gun.
  46. Racey, P.A. 2009. Bats: status, threat and conservation successes. Endangered Species Research 8: 1-3. https://doi.org/10.3354/esr00213
  47. Ransome, R.D. 1968. The distribution of the greater horse-shoe bat, Rhinolophus ferrumequinum, during hibernation, in relation to environmental factors. Journal of Zoology 154: 77 -112.
  48. Richter, A.R., S.R. Humphrey, J.B. Cope and V. Brack, Jr. 1993. Modified cave entrances: thermal effect on body mass and resulting decline of endangered Indiana bats (Myotis sodalis). Conservation Biology 7: 407-415. https://doi.org/10.1046/j.1523-1739.1993.07020407.x
  49. Romero, A. 2009. Cave Biology: Life in Darkness. Cambridge University Press.
  50. Ruczynski, I., I. Ruczynska and K. Kasprzyk. 2005. Winter mortality rates of bats inhabiting man-made shelters (northern Poland). Acta Theriologica 50: 161-166. https://doi.org/10.1007/BF03194479
  51. Solick, D.I. and R.M.R. Barclay. 2007. Geographic variation in the use of torpor and roosting behaviour of female western long-eared bats. Journal of Zoology 272: 358-366. https://doi.org/10.1111/j.1469-7998.2006.00276.x
  52. Swift, S.M. 1998. Long-eared bats. A&C Black.
  53. Thomas, D.W., M. Dorais and J.M. Bergeron. 1990. Winter energy budgets and cost of arousals for hibernating little brown bats, Myotis lucifugus. Journal of Mammalogy 71: 475-479. https://doi.org/10.2307/1381967
  54. Tidemann, C.R. and S.C. Flavel. 1987. Factors affecting choice of diurnal roost site by tree-hole bats (Microchiroptera) in southeastern Australia. Wildlife Research 14: 459-473. https://doi.org/10.1071/WR9870459
  55. Tuttle, M.D. and J. Kennedy. 2002. Thermal requirements during hibernation, p. 68-78. In: The Indiana Bat: Biology and Management of an Endangered Speciese (Kurta, A. and J. Kennedy, eds.). Bat Conservation International.
  56. Valenciuc, N. 1989. Dynamics of movements of bats inside some shelters, p. 511-517. In: European bat research (Hanak, A., I. Horaeek and J. Gaisler, eds). Charles University Press, Praha.
  57. Webb, P.I., J.R. Speakman and P.A. Racey. 1996. How hot is a hibernaculum? A review of the temperatures at which bats hibernate. Canadian Journal of Zoology 74: 761-765. https://doi.org/10.1139/z96-087
  58. Willis, C.K.R. and R.M Brigham. 2003. Defining torpor in free-ranging bats: experimental evaluation of external temperature-sensitive radiotransmitters and the concept of active temperature. Journal of Comparative Physiology B 173: 379-389. https://doi.org/10.1007/s00360-003-0343-y
  59. Yeongwol-Gun. 2001. The report of caves investigation in Yeongwol-gun.