DOI QR코드

DOI QR Code

Spatial Typification based on Heat Balance for Improving Thermal Environment in Seoul

열수지를 활용한 서울시 열환경 개선을 위한 공간 유형화

  • Kwon, You Jin (Interdisciplinary Program in Landscape Architecture, Seoul National Univ.) ;
  • Ahn, Saekyul (Dept. of Landscape Architecture & Rural System Engi., Seoul National Univ.) ;
  • Lee, Dong Kun (Dept. of Landscape Architecture & Rural System Engineering, Seoul National Univ.) ;
  • Yoon, Eun Joo (Interdisciplinary Prog. in Landscape Architecture, Seoul National Univ.) ;
  • Sung, Sunyong (National Institute of Ecology) ;
  • Lee, Kiseung (Graduate School of Public Health)
  • Received : 2018.07.31
  • Accepted : 2018.11.26
  • Published : 2018.12.31

Abstract

The purpose of this study is to identify the spatial types for thermal environment improvement considering heat flux and its spatial context through empirical orthodox formulas. First, k-means clustering was used to classify values of three kinds of heat flux - latent, sensible and storage heat. Next, from the k-means clustering, we defined a type of thermal environment (type LHL) where improvement is needed for more comfortable and pleasant thermal environment in the city, among the eight types. Lastly, we compared and analyzed the characteristics of each classified thermal environmental types based on land cover types. From the study, we found that the ratio of impervious surfaces, roads, and buildings of the type LHL is higher than those of the type HLH (relatively thermal comfort environment). In order to improve the thermal environment, the following contents are proposed to urban planners and designers depending on the results of the study. a) Increase the green zone rate by 10% to reduce sensible heat; b) Reduce the percentage of impermeable surfaces and roads by 10% ; c) Latent heat increases when water and green spaces are expanded. This study will help to establish a minimum criterion for a land cover rate for the improvement of the urban thermal environment and a standard index for the thermal environmental improvement can be derived.

Keywords

Acknowledgement

Supported by : 국토교통과학기술진흥원

References

  1. Kim, J., Lee D., Sung, S., Jeong, S., Park, J., 2015, "Study of vulnerable district characteristics on urban heat island according to land use using normalized index", Journal of Korea Planning Association, 50(5): 59-72. https://doi.org/10.17208/jkpa.2015.08.50.5.59
  2. "Effect of the Urban Land Cover Types on the Surface Temperature", Korean Journal of Remote Sensing, 28(2): 203-214. https://doi.org/10.7780/kjrs.2012.28.2.203
  3. Song, B., Park, K., 2011, "The Classification of Spatial Patterns Considering Formation Parameters of Urban Climate", Environmental Impact Assessment, 20(3): 299-311.
  4. Yeo, I., Yee, J., Yoon, S., 2012, "Analysis on the Effects of Building Coverage Ratio and Floor Space Index on Urban climate", Journal of the Korean Solar Energy Society, 29(3): 19-27.
  5. Allen, R. G., Pereira L. S., Raes, D., Smith, M., 1998, "Crop evapotranspiration-Guidelines for computing crop water requirements-", FAO Irrication and drainage paper, 56: 1-15.
  6. Bennett, A., 2004, "Heat Fluxes From Street Canyons", MSc Applied Meteorology dissertation, The University of Reading. 1-71.
  7. Clothier, B. E., Clawson, K. L., Pinter. Jr., P. J., Moran, M. S., Reginato, R. J. and Jackson, R. D., 1986, "Estimation of Soil Heat Flux from Net Radiation During the Growth of Alfalfa", Agricultural and Forest Meteorology, 37(1986): 319-329. https://doi.org/10.1016/0168-1923(86)90069-9
  8. Crevier, L. -P. and Delage, Y., 2001, "METRo: A New Model for Road-Condition Forecasting in Canada", American Meterological Society, 40: 2026-2037.
  9. Geletic, J., Lehnert, M., Savic, S., Milosevic, D., 2018, "Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic", Science of the Total Environment, 624(2018): p. 385-395. https://doi.org/10.1016/j.scitotenv.2017.12.076
  10. Grimmond, C. S. B. and Oke, T. R., 1991, "An Evapotranspiration-interception model for urban areas", Water Resources Research-AGU Journal, 27(7): 1739-1755. https://doi.org/10.1029/91WR00557
  11. Holtslag, A. A. M., van Ulden, A. P., 1983, "A Simple Scheme for Daytime Estimates of the Surface from Routine Weather Data", Journal of climate and Applied Neteorology, 22(4): 517-529. https://doi.org/10.1175/1520-0450(1983)022<0517:ASSFDE>2.0.CO;2
  12. Jain, A. K., 2010. "Data Clustering : 50 years beyond k-means", Pattern Recognition Letters,31(8): 651-666. https://doi.org/10.1016/j.patrec.2009.09.011
  13. Janssens, W., De Pelsmacker, P., Wijnen, K., Van Kenhove, P. 2008. "Marketing research with SPSS". Upper Saddle River, NJ : Prentice Hall.
  14. Janzing, D., Mooij, J., Shang, K., Lemeire, J., Zscheischler, J., Caniusis, P., Steudel, B., Scholkopf, B., 2012. "Information-geometric approach to inferring causal directions", Artificial Intelligence, 182(183): 1-31.
  15. Kato, S., Yamaguchi, Y., 2007, "Estimation of storage heat flux in an urban area using ASTER data", Remote Sensing of Environment, 110(1): 1-17. https://doi.org/10.1016/j.rse.2007.02.011
  16. Kjaerulffa, T. M., Ersboll, A. K., Gislason, G., Schipperijn, J., 2016, "Geographical clustering of incident acute myocardial infarction in Denmark: A spatial analysis approach", Spatial and Spatio-temporal Epidemiology, 19: 46-59. https://doi.org/10.1016/j.sste.2016.05.001
  17. Kothe, S., Dobler, A., Beck, A., Ahrens, B., 2011"The radiation budget in a regional climate model", Climate Dynamics, 36(5-6): 1023-1036. https://doi.org/10.1007/s00382-009-0733-2
  18. Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006"World Map of the Koppen-Geiger climate classification updated", Meteorologische Zitschrift, 15:259-263. https://doi.org/10.1127/0941-2948/2006/0130
  19. Li, W., Cao, Q., Kun Lang, K., Wu, J., 2017. "Linking potential heat source and sink to urban heat island Heterogeneous effects of landscape pattern on land surface temperature", Science of The Total Environment, 586: 457-465. https://doi.org/10.1016/j.scitotenv.2017.01.191
  20. Lindberg, F. and Grimmond, C. S. B., 2011. "The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: model development and evaluation", Theoretical and Applied Climatology, 105(3-4): 311-323. https://doi.org/10.1007/s00704-010-0382-8
  21. Loridan, T. and Grimmond C. S. B., 2011. "Local-Scale Urban Meteorological Parameterization Scheme(LUMPS): Longwave Radiation Parameterization and Seasonality-Related Development", Journal of Applied Meteorology and Climatology, 50: 185-202 https://doi.org/10.1175/2010JAMC2474.1
  22. Martines, A. T., Ostos, E. J., 2005. "Surface energy balance measurements in the Mexico City region: a review", Atmosfera, 18(1): 1-23.
  23. Masson, V., Grimmond, C. S. B., Oke and T. R., 2002. "Evaluation of the Town Energy Balance (TEB) Scheme with Direct measurement from Dry Distrits in Two Cities", Journal of Applied Meteorology and Climatology, 41: 1011-1026. https://doi.org/10.1175/1520-0450(2002)041<1011:EOTTEB>2.0.CO;2
  24. Offerle, B., Grimmond, C. S. B. and Oke, T. R., 2003. "Parameterization of Net All-Wave Radiation for Urban Areas", American Meteorological Society, 42: 1157-1173.
  25. Spronken-Smith, R. A., 2002, "Comparison of Summer-and Winter-time Suburban Energy Fluxes in Christchurch, New Zealand", International Journal of Climatology, 22: 979-992. https://doi.org/10.1002/joc.767
  26. Sobstyl, J. M., Emig, T., Abdolhosseini Qomi, M. J., Ulm, F.-J., and Pellenq, R. J. -M., 2018. "Role of City Texture in Urban Heat Islands at Nighttime", Physical Review Letters, 120(10): 1-6.
  27. Stewart, I. D., Oke, T. R., 2012. "Local Climate Zones for Urban Temperature Studies", Bulletin of the American Meteorological Society, 93(12): 1879-1900. https://doi.org/10.1175/BAMS-D-11-00019.1
  28. Williams, I. N., Torn, M. S., 2015. "Vegetation controls on surface heat flux partitioning, and land atmosphere coupling", Geophysical Research Letters. An AGU Journal, 42(21): 9416-9424. https://doi.org/10.1002/2015GL066305
  29. Velmurugan, T., Santhanam, T., 2010, "Computational Complexity between k-means and K-Medoids Clustering Algorithms for Normal and Uniform Distributions of Data Points", Journal of Computer Science, 6(3): 363-368. https://doi.org/10.3844/jcssp.2010.363.368
  30. Voogt, J. A., Grimmond, C. S. B., 2000, "Modeling Surface Sensible Heat Flux Using Surface Radiative Temperatures in a Simple Urban Area", Journal of Applied Meteorology and Climatology, 39(10): 1679-1699. https://doi.org/10.1175/1520-0450-39.10.1679
  31. Zscheischler, J. Mahechaa, M. D., Harmelingb, S., 2012. "Climate classifications: the value of unsupervised clustering", Procedia Computer Science, 9(R1-R2) ; 897-906. https://doi.org/10.1016/j.procs.2012.04.096
  32. Zhou, Z., Wang, L., Lina, A., Zhang, M., Niub, Z., 2018. "Innovative trend analysis of solar radiation in China during 1962-2015", Renewable Energy, 119: 675-689. https://doi.org/10.1016/j.renene.2017.12.052

Cited by

  1. Thermal Comfort and Longwave Radiation over Time in Urban Residential Complexes vol.11, pp.8, 2018, https://doi.org/10.3390/su11082251
  2. Determining Favourable and Unfavourable Thermal Areas in Seoul Using In-Situ Measurements: A Preliminary Step towards Developing a Smart City vol.12, pp.12, 2019, https://doi.org/10.3390/en12122320
  3. 미세먼지(PM10) 추세를 고려한 환경계획 적용 방향 제안 vol.29, pp.3, 2020, https://doi.org/10.14249/eia.2020.29.3.210
  4. Differing spatial patterns of the urban heat exposure of elderly populations in two megacities identifies alternate adaptation strategies vol.781, pp.None, 2021, https://doi.org/10.1016/j.scitotenv.2021.146455